Spaces:
Running
Running
Upload Collaborators.R
Browse files- Collaborators.R +533 -0
Collaborators.R
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# {
|
2 |
+
# # load packages
|
3 |
+
# suppressPackageStartupMessages(library(dplyr))
|
4 |
+
# suppressPackageStartupMessages(library(spotifyr))
|
5 |
+
#
|
6 |
+
# # Set up environment
|
7 |
+
# client_ID <- "bc0b388b3801497f8162615befb50a43"
|
8 |
+
# client_secret <- "512e20aa79ff4a228cc4e95ab46a45fd"
|
9 |
+
#
|
10 |
+
# Sys.setenv(SPOTIFY_CLIENT_ID = client_ID)
|
11 |
+
# Sys.setenv(SPOTIFY_CLIENT_SECRET = client_secret)
|
12 |
+
#
|
13 |
+
# access_token <- get_spotify_access_token()
|
14 |
+
# }
|
15 |
+
|
16 |
+
|
17 |
+
get_artists_collaborators <- function(spotify_artist_id) {
|
18 |
+
# related artists nodes function
|
19 |
+
get_Nodes <- function(artist_id) {
|
20 |
+
# get artists related to main artist
|
21 |
+
related_artists <- get_related_artists(
|
22 |
+
id = artist_id,
|
23 |
+
include_meta_info = TRUE
|
24 |
+
)
|
25 |
+
|
26 |
+
# get other artists that are related to the
|
27 |
+
# artists that are related to the main artist
|
28 |
+
other_related <- c()
|
29 |
+
for (i in 1:nrow(related_artists$artists)) {
|
30 |
+
result <- get_related_artists(
|
31 |
+
id = related_artists$artists[["id"]][i],
|
32 |
+
include_meta_info = TRUE
|
33 |
+
)
|
34 |
+
other_related <- append(other_related, result)
|
35 |
+
}
|
36 |
+
|
37 |
+
images <- c()
|
38 |
+
for (i in other_related) { # this loops through the list
|
39 |
+
for (k in 1:nrow(i)) { # this loops through each table in list
|
40 |
+
image_urls <- i$images[[k]]$url[2] # the third image is collected per row in each table
|
41 |
+
images <- append(images, image_urls)
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
genre <- c()
|
46 |
+
for (i in (other_related)) { # this loops through each list
|
47 |
+
for (j in 1:nrow(i)) { # this loops through each table in list
|
48 |
+
result <- i$genres[[j]][2] # this collects the 2nd item in the vector of genres
|
49 |
+
genre <- append(genre, result)
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
nodes <- data.frame(
|
55 |
+
name = tolower(c(
|
56 |
+
other_related[[1]]$name,
|
57 |
+
other_related[[2]]$name,
|
58 |
+
other_related[[3]]$name,
|
59 |
+
other_related[[4]]$name,
|
60 |
+
other_related[[5]]$name,
|
61 |
+
other_related[[6]]$name,
|
62 |
+
other_related[[7]]$name,
|
63 |
+
other_related[[8]]$name,
|
64 |
+
other_related[[9]]$name,
|
65 |
+
other_related[[10]]$name,
|
66 |
+
other_related[[11]]$name,
|
67 |
+
other_related[[12]]$name,
|
68 |
+
other_related[[13]]$name,
|
69 |
+
other_related[[14]]$name,
|
70 |
+
other_related[[15]]$name,
|
71 |
+
other_related[[16]]$name,
|
72 |
+
other_related[[17]]$name,
|
73 |
+
other_related[[18]]$name,
|
74 |
+
other_related[[19]]$name,
|
75 |
+
other_related[[20]]$name
|
76 |
+
)),
|
77 |
+
id = c(c(
|
78 |
+
other_related[[1]]$id,
|
79 |
+
other_related[[2]]$id,
|
80 |
+
other_related[[3]]$id,
|
81 |
+
other_related[[4]]$id,
|
82 |
+
other_related[[5]]$id,
|
83 |
+
other_related[[6]]$id,
|
84 |
+
other_related[[7]]$id,
|
85 |
+
other_related[[8]]$id,
|
86 |
+
other_related[[9]]$id,
|
87 |
+
other_related[[10]]$id,
|
88 |
+
other_related[[11]]$id,
|
89 |
+
other_related[[12]]$id,
|
90 |
+
other_related[[13]]$id,
|
91 |
+
other_related[[14]]$id,
|
92 |
+
other_related[[15]]$id,
|
93 |
+
other_related[[16]]$id,
|
94 |
+
other_related[[17]]$id,
|
95 |
+
other_related[[18]]$id,
|
96 |
+
other_related[[19]]$id,
|
97 |
+
other_related[[20]]$id
|
98 |
+
)),
|
99 |
+
popularity = c(c(
|
100 |
+
other_related[[1]]$popularity,
|
101 |
+
other_related[[2]]$popularity,
|
102 |
+
other_related[[3]]$popularity,
|
103 |
+
other_related[[4]]$popularity,
|
104 |
+
other_related[[5]]$popularity,
|
105 |
+
other_related[[6]]$popularity,
|
106 |
+
other_related[[7]]$popularity,
|
107 |
+
other_related[[8]]$popularity,
|
108 |
+
other_related[[9]]$popularity,
|
109 |
+
other_related[[10]]$popularity,
|
110 |
+
other_related[[11]]$popularity,
|
111 |
+
other_related[[12]]$popularity,
|
112 |
+
other_related[[13]]$popularity,
|
113 |
+
other_related[[14]]$popularity,
|
114 |
+
other_related[[15]]$popularity,
|
115 |
+
other_related[[16]]$popularity,
|
116 |
+
other_related[[17]]$popularity,
|
117 |
+
other_related[[18]]$popularity,
|
118 |
+
other_related[[19]]$popularity,
|
119 |
+
other_related[[20]]$popularity
|
120 |
+
)),
|
121 |
+
followers = c(c(
|
122 |
+
other_related[[1]]$followers.total,
|
123 |
+
other_related[[2]]$followers.total,
|
124 |
+
other_related[[3]]$followers.total,
|
125 |
+
other_related[[4]]$followers.total,
|
126 |
+
other_related[[5]]$followers.total,
|
127 |
+
other_related[[6]]$followers.total,
|
128 |
+
other_related[[7]]$followers.total,
|
129 |
+
other_related[[8]]$followers.total,
|
130 |
+
other_related[[9]]$followers.total,
|
131 |
+
other_related[[10]]$followers.total,
|
132 |
+
other_related[[11]]$followers.total,
|
133 |
+
other_related[[12]]$followers.total,
|
134 |
+
other_related[[13]]$followers.total,
|
135 |
+
other_related[[14]]$followers.total,
|
136 |
+
other_related[[15]]$followers.total,
|
137 |
+
other_related[[16]]$followers.total,
|
138 |
+
other_related[[17]]$followers.total,
|
139 |
+
other_related[[18]]$followers.total,
|
140 |
+
other_related[[19]]$followers.total,
|
141 |
+
other_related[[20]]$followers.total
|
142 |
+
)),
|
143 |
+
profile = c(c(
|
144 |
+
other_related[[1]]$external_urls.spotify,
|
145 |
+
other_related[[2]]$external_urls.spotify,
|
146 |
+
other_related[[3]]$external_urls.spotify,
|
147 |
+
other_related[[4]]$external_urls.spotify,
|
148 |
+
other_related[[5]]$external_urls.spotify,
|
149 |
+
other_related[[6]]$external_urls.spotify,
|
150 |
+
other_related[[7]]$external_urls.spotify,
|
151 |
+
other_related[[8]]$external_urls.spotify,
|
152 |
+
other_related[[9]]$external_urls.spotify,
|
153 |
+
other_related[[10]]$external_urls.spotify,
|
154 |
+
other_related[[11]]$external_urls.spotify,
|
155 |
+
other_related[[12]]$external_urls.spotify,
|
156 |
+
other_related[[13]]$external_urls.spotify,
|
157 |
+
other_related[[14]]$external_urls.spotify,
|
158 |
+
other_related[[15]]$external_urls.spotify,
|
159 |
+
other_related[[16]]$external_urls.spotify,
|
160 |
+
other_related[[17]]$external_urls.spotify,
|
161 |
+
other_related[[18]]$external_urls.spotify,
|
162 |
+
other_related[[19]]$external_urls.spotify,
|
163 |
+
other_related[[20]]$external_urls.spotify
|
164 |
+
)),
|
165 |
+
images = images,
|
166 |
+
genre = genre
|
167 |
+
)
|
168 |
+
|
169 |
+
## Remove duplicate nodes and labels in data frame
|
170 |
+
|
171 |
+
nodes_df <- distinct(nodes, name, id, popularity, profile,
|
172 |
+
images, genre, followers,
|
173 |
+
.keep_all = T
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
+
return(nodes_df)
|
178 |
+
}
|
179 |
+
|
180 |
+
# get related artists nodes
|
181 |
+
related_artists <- get_Nodes(artist_id = spotify_artist_id)
|
182 |
+
|
183 |
+
# get related artists data
|
184 |
+
artist_related_artists <- function(related_artist) {
|
185 |
+
related_artists_data <- list()
|
186 |
+
|
187 |
+
for (i in 1:nrow(related_artist)) {
|
188 |
+
# Get the artist ID from the second column of related_artists
|
189 |
+
artist_id <- related_artist[[2]][i]
|
190 |
+
|
191 |
+
# Retrieve the artist's albums using the artist ID
|
192 |
+
result <- get_artist_albums(artist_id, limit = 50)
|
193 |
+
|
194 |
+
# Create a data frame from the result
|
195 |
+
related_artists_albums <- data.frame(result)
|
196 |
+
|
197 |
+
# Add the data frame to the list
|
198 |
+
related_artists_data[[i]] <- related_artists_albums
|
199 |
+
}
|
200 |
+
|
201 |
+
return(related_artists_data)
|
202 |
+
}
|
203 |
+
|
204 |
+
related_artists_data <- artist_related_artists(related_artist = related_artists)
|
205 |
+
|
206 |
+
# get the artists collaborators
|
207 |
+
get_collaborators <- function(data, artist_name) {
|
208 |
+
artists <- c() # initialize empty vector
|
209 |
+
# outer loop loops through the length of artists list
|
210 |
+
for (i in 1:length(data$artists)) {
|
211 |
+
# inner loop loops through the length of individual
|
212 |
+
# "name" column in artists list
|
213 |
+
for (j in 1:length(data$artists[[i]][3][, ])) {
|
214 |
+
# scrapes the artist names
|
215 |
+
result <- data$artists[[i]][3][j, ]
|
216 |
+
# appends the names to "artists" vector
|
217 |
+
artists <- append(artists, result)
|
218 |
+
}
|
219 |
+
}
|
220 |
+
|
221 |
+
artists <- unique(artists) # removes duplicate names
|
222 |
+
artists <- tolower(artists) # turns to lowercase
|
223 |
+
# turns the search artist's name to NA
|
224 |
+
artists <- gsub(tolower(artist_name), NA, artists)
|
225 |
+
artists <- na.omit(artists) # remove NA from vector
|
226 |
+
|
227 |
+
return(artists)
|
228 |
+
}
|
229 |
+
|
230 |
+
# function that gets the collaborators data
|
231 |
+
collab_df <- function(related_artists_data, artist_data) {
|
232 |
+
collaborators <- c()
|
233 |
+
artists_list <- c()
|
234 |
+
for (i in 1:length(related_artists_data)) {
|
235 |
+
result <- get_collaborators(related_artists_data[[i]],
|
236 |
+
artist_name = artist_data[[1]][i]
|
237 |
+
)
|
238 |
+
|
239 |
+
collaborators <- c(collaborators, result)
|
240 |
+
artists_list <- c(artists_list, rep(artist_data[[1]][i], times = length(result)))
|
241 |
+
}
|
242 |
+
|
243 |
+
artists_collaborators <- data.frame(artists = artists_list, collaborators = collaborators)
|
244 |
+
|
245 |
+
return(artists_collaborators)
|
246 |
+
}
|
247 |
+
|
248 |
+
# application of the function
|
249 |
+
collabs <- collab_df(
|
250 |
+
related_artists_data = related_artists_data,
|
251 |
+
artist_data = related_artists
|
252 |
+
)
|
253 |
+
|
254 |
+
# get attribute data for each collaborator
|
255 |
+
attribute_data <- list()
|
256 |
+
for (i in 1:nrow(collabs)) {
|
257 |
+
attribute_data[[i]] <- search_spotify(collabs$collaborators[[i]],
|
258 |
+
type = "artist",
|
259 |
+
include_meta_info = T
|
260 |
+
)
|
261 |
+
}
|
262 |
+
|
263 |
+
# collect attributes of collaborators
|
264 |
+
{
|
265 |
+
name <- c()
|
266 |
+
id <- c()
|
267 |
+
popularity <- c()
|
268 |
+
followers <- c()
|
269 |
+
profile <- c()
|
270 |
+
images <- c()
|
271 |
+
genre <- c()
|
272 |
+
|
273 |
+
for (i in 1:length(attribute_data)) {
|
274 |
+
name <- c(name, attribute_data[[i]][[1]][[2]][5][[1]][1])
|
275 |
+
id <- c(id, attribute_data[[i]][[1]][[2]][3][[1]][1])
|
276 |
+
popularity <- c(popularity, attribute_data[[i]][[1]][[2]][6][[1]][1])
|
277 |
+
followers <- c(followers, attribute_data[[i]][[1]][[2]][11][[1]][1])
|
278 |
+
profile <- c(profile, attribute_data[[i]][[1]][[2]][9][[1]][1])
|
279 |
+
images <- c(images, attribute_data[[i]][[1]][[2]][4][[1]][1])
|
280 |
+
genre <- c(genre, attribute_data[[i]][[1]][[2]][1][[1]][1])
|
281 |
+
}
|
282 |
+
}
|
283 |
+
|
284 |
+
# loop through images list and store converted
|
285 |
+
# data frames in a list
|
286 |
+
images_df_list <- list()
|
287 |
+
for (i in 1:length(images)) {
|
288 |
+
images_df_list[[i]] <- list2DF(images[[i]])
|
289 |
+
}
|
290 |
+
|
291 |
+
# loop through the list of data frames & extract
|
292 |
+
# the image urls
|
293 |
+
images_vec <- c()
|
294 |
+
for (i in 1:length(images_df_list)) {
|
295 |
+
images_vec <- c(images_vec, images_df_list[[i]]$url[[1]][1])
|
296 |
+
}
|
297 |
+
|
298 |
+
len_diff_img <- name |>
|
299 |
+
length() - images_vec |>
|
300 |
+
length()
|
301 |
+
|
302 |
+
# add a repetition of the last 6 urls to the vector
|
303 |
+
# so that its length is equal to the length of other
|
304 |
+
# attribute vectors
|
305 |
+
images_vec <- c(
|
306 |
+
images_vec,
|
307 |
+
rep(images_vec[tail(length(images_vec))], times = len_diff_img)
|
308 |
+
)
|
309 |
+
|
310 |
+
# get genre data
|
311 |
+
genre_vec <- c()
|
312 |
+
for (i in 1:length(genre)) {
|
313 |
+
genre_vec <- c(genre_vec, genre[[i]][1])
|
314 |
+
}
|
315 |
+
|
316 |
+
music_genres <- c()
|
317 |
+
for (m in 1:length(genre_vec)) {
|
318 |
+
music_genres <- c(music_genres, genre_vec[[m]])
|
319 |
+
}
|
320 |
+
|
321 |
+
len_diff_gnr <- name |>
|
322 |
+
length() - music_genres |>
|
323 |
+
length()
|
324 |
+
|
325 |
+
music_genres <- c(
|
326 |
+
music_genres,
|
327 |
+
rep(music_genres[tail(length(music_genres))], times = len_diff_gnr)
|
328 |
+
)
|
329 |
+
|
330 |
+
# create collaborators data frame
|
331 |
+
collaborators_df <- data.frame(
|
332 |
+
name = name,
|
333 |
+
id = id,
|
334 |
+
popularity = popularity,
|
335 |
+
followers = followers,
|
336 |
+
profile = profile,
|
337 |
+
images = images_vec,
|
338 |
+
genre = music_genres
|
339 |
+
)
|
340 |
+
|
341 |
+
# filter out 2Pac
|
342 |
+
collaborators_df <- collaborators_df |>
|
343 |
+
filter(name != "2Pac")
|
344 |
+
|
345 |
+
# rename columns in collabs
|
346 |
+
colnames(collabs) <- c("Vertex1", "Vertex2")
|
347 |
+
|
348 |
+
# grab Vertex1 attributes
|
349 |
+
popularity <- c()
|
350 |
+
for (i in 1:nrow(collabs)) {
|
351 |
+
result <- filter(
|
352 |
+
related_artists,
|
353 |
+
related_artists$name == collabs$Vertex1[[i]][1]
|
354 |
+
)[[3]]
|
355 |
+
popularity <- c(popularity, result)
|
356 |
+
}
|
357 |
+
|
358 |
+
followers <- c()
|
359 |
+
for (i in 1:nrow(collabs)) {
|
360 |
+
result <- filter(
|
361 |
+
related_artists,
|
362 |
+
related_artists$name == collabs$Vertex1[[i]][1]
|
363 |
+
)[[4]]
|
364 |
+
followers <- c(followers, result)
|
365 |
+
}
|
366 |
+
|
367 |
+
profile <- c()
|
368 |
+
for (i in 1:nrow(collabs)) {
|
369 |
+
result <- filter(
|
370 |
+
related_artists,
|
371 |
+
related_artists$name == collabs$Vertex1[[i]][1]
|
372 |
+
)[[5]]
|
373 |
+
profile <- c(profile, result)
|
374 |
+
}
|
375 |
+
|
376 |
+
images <- c()
|
377 |
+
for (i in 1:nrow(collabs)) {
|
378 |
+
result <- filter(
|
379 |
+
related_artists,
|
380 |
+
related_artists$name == collabs$Vertex1[[i]][1]
|
381 |
+
)[[6]]
|
382 |
+
images <- c(images, result)
|
383 |
+
}
|
384 |
+
|
385 |
+
genre <- c()
|
386 |
+
for (i in 1:nrow(collabs)) {
|
387 |
+
result <- filter(
|
388 |
+
related_artists,
|
389 |
+
related_artists$name == collabs$Vertex1[[i]][1]
|
390 |
+
)[[7]]
|
391 |
+
genre <- c(genre, result)
|
392 |
+
}
|
393 |
+
|
394 |
+
# convert "names" in collaborators_df to lowercase
|
395 |
+
collaborators_df$name <- tolower(collaborators_df$name)
|
396 |
+
|
397 |
+
# filter out "various artists" from collabs
|
398 |
+
collabs <- collabs |>
|
399 |
+
filter(Vertex2 != "various artists")
|
400 |
+
|
401 |
+
# check if name in Vertex2 is an English character
|
402 |
+
ascii_check <- c()
|
403 |
+
for (i in 1:nrow(collabs)) {
|
404 |
+
ascii_check <- c(ascii_check, collabs$Vertex2[[i]][1] |> stringi::stri_enc_isascii())
|
405 |
+
}
|
406 |
+
|
407 |
+
# append check result to collabs dataframe
|
408 |
+
collabs$ASCII <- ascii_check
|
409 |
+
|
410 |
+
# filter out non-English characters
|
411 |
+
collabs <- collabs |>
|
412 |
+
filter(ASCII != FALSE)
|
413 |
+
|
414 |
+
# delete ASCII column
|
415 |
+
collabs$ASCII <- NULL
|
416 |
+
|
417 |
+
# delete rows from Vertex1 attributes to equal
|
418 |
+
# collabs rows
|
419 |
+
popularity <- popularity[-c(1 + length(popularity):nrow(collabs))]
|
420 |
+
|
421 |
+
followers <- followers[-c(1 + length(followers):nrow(collabs))]
|
422 |
+
|
423 |
+
profile <- profile[-c(1 + length(profile):nrow(collabs))]
|
424 |
+
|
425 |
+
images <- images[-c(1 + length(images):nrow(collabs))]
|
426 |
+
|
427 |
+
genre <- genre[-c(1 + length(genre):nrow(collabs))]
|
428 |
+
|
429 |
+
# grab Vertex2 attributes
|
430 |
+
popularityB <- c()
|
431 |
+
for (i in 1:nrow(collabs)) {
|
432 |
+
result <- filter(
|
433 |
+
collaborators_df,
|
434 |
+
collaborators_df$name == collabs$Vertex2[[i]][1]
|
435 |
+
)[[3]]
|
436 |
+
popularityB <- c(popularityB, result)
|
437 |
+
}
|
438 |
+
|
439 |
+
followersB <- c()
|
440 |
+
for (i in 1:nrow(collabs)) {
|
441 |
+
result <- filter(
|
442 |
+
collaborators_df,
|
443 |
+
collaborators_df$name == collabs$Vertex2[[i]][1]
|
444 |
+
)[[4]]
|
445 |
+
followersB <- c(followersB, result)
|
446 |
+
}
|
447 |
+
|
448 |
+
profileB <- c()
|
449 |
+
for (i in 1:nrow(collabs)) {
|
450 |
+
result <- filter(
|
451 |
+
collaborators_df,
|
452 |
+
collaborators_df$name == collabs$Vertex2[[i]][1]
|
453 |
+
)[[5]]
|
454 |
+
profileB <- c(profileB, result)
|
455 |
+
}
|
456 |
+
|
457 |
+
imagesB <- c()
|
458 |
+
for (i in 1:nrow(collabs)) {
|
459 |
+
result <- filter(
|
460 |
+
collaborators_df,
|
461 |
+
collaborators_df$name == collabs$Vertex2[[i]][1]
|
462 |
+
)[[6]]
|
463 |
+
imagesB <- c(imagesB, result)
|
464 |
+
}
|
465 |
+
|
466 |
+
genreB <- c()
|
467 |
+
for (i in 1:nrow(collabs)) {
|
468 |
+
result <- filter(
|
469 |
+
collaborators_df,
|
470 |
+
collaborators_df$name == collabs$Vertex2[[i]][1]
|
471 |
+
)[[7]]
|
472 |
+
genreB <- c(genreB, result)
|
473 |
+
}
|
474 |
+
|
475 |
+
# delete rows from Vertex2 attributes to equal
|
476 |
+
# collabs rows
|
477 |
+
popularityB <- popularityB[-c(1 + length(popularityB):nrow(collabs))]
|
478 |
+
|
479 |
+
followersB <- followersB[-c(1 + length(followersB):nrow(collabs))]
|
480 |
+
|
481 |
+
profileB <- profileB[-c(1 + length(profileB):nrow(collabs))]
|
482 |
+
|
483 |
+
imagesB <- imagesB[-c(1 + length(imagesB):nrow(collabs))]
|
484 |
+
|
485 |
+
genreB <- genreB[-c(1 + length(genreB):nrow(collabs))]
|
486 |
+
|
487 |
+
# create flat file of collaborators
|
488 |
+
{
|
489 |
+
collabs$`Vertex1 popularity` <- popularity
|
490 |
+
collabs$`Vertex1 followers` <- followers
|
491 |
+
collabs$`Vertex1 profile` <- profile
|
492 |
+
collabs$`Vertex1 images` <- images
|
493 |
+
collabs$`Vertex1 genre` <- genre
|
494 |
+
|
495 |
+
collabs$`Vertex2 popularity` <- popularityB
|
496 |
+
collabs$`Vertex2 followers` <- followersB
|
497 |
+
collabs$`Vertex2 profile` <- profileB
|
498 |
+
collabs$`Vertex2 images` <- imagesB
|
499 |
+
collabs$`Vertex2 genre` <- genreB
|
500 |
+
}
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
return(collabs)
|
505 |
+
|
506 |
+
|
507 |
+
}
|
508 |
+
|
509 |
+
# test
|
510 |
+
# tictoc::tic()
|
511 |
+
# steve_wonder_collab_network <- get_artists_collaborators(spotify_artist_id = "7guDJrEfX3qb6FEbdPA5qi")
|
512 |
+
# tictoc::toc()
|
513 |
+
#
|
514 |
+
#
|
515 |
+
# steve_wonder_collab_network |> View()
|
516 |
+
#
|
517 |
+
# tictoc::tic()
|
518 |
+
# billie_eilish_collab_network <- get_artists_collaborators(spotify_artist_id = "6qqNVTkY8uBg9cP3Jd7DAH")
|
519 |
+
# tictoc::toc()
|
520 |
+
#
|
521 |
+
# billie_eilish_collab_network |> View()
|
522 |
+
# write.csv(billie_eilish_collab_network,file = "billie_eilish_collab_network.csv")
|
523 |
+
#
|
524 |
+
# tictoc::tic()
|
525 |
+
# madonna_collab_network <- get_artists_collaborators(spotify_artist_id = "6tbjWDEIzxoDsBA1FuhfPW")
|
526 |
+
# tictoc::toc()
|
527 |
+
#
|
528 |
+
# madonna_collab_network |> View()
|
529 |
+
#
|
530 |
+
# tictoc::tic()
|
531 |
+
# diana_ross_collab_network <- get_artists_collaborators(spotify_artist_id = "3MdG05syQeRYPPcClLaUGl")
|
532 |
+
# tictoc::toc()
|
533 |
+
#
|