Spaces:
Running
Running
library(shiny) | |
library(shinyalert) | |
library(shinythemes) | |
library(shinydisconnect) | |
library(shinycssloaders) | |
library(shinyWidgets) | |
library(spotifyr) | |
library(SpotifyNetwork) | |
library(spsComps) | |
library(searcher) | |
library(reactable) | |
library(visNetwork) | |
library(plotly) | |
library(bslib) | |
library(dplyr) | |
library(igraph) | |
# set global options | |
options( | |
shiny.browser = T, | |
spinner.color = "#16F529", | |
spinner.color.background = "#FFFFFF", | |
spinner.size = 2 | |
) | |
# create theme | |
my_theme <- bs_theme( | |
bg = "#fdfefe", | |
fg = "black", | |
primary = "red", | |
base_font = font_google("Michroma"), | |
"font-size-base" = "0.75rem", | |
version = 5, | |
"navbar-bg" = "#16F529" | |
) | |
# define UI for application that gets Spotify network data | |
ui <- navbarPage( | |
title = strong("Spotify Data Importer"), id = "navbar", | |
# useShinyalert(), | |
windowTitle = "Spotify Data Importer", | |
# add telemetry javascript elements | |
header = use_telemetry(), | |
footer = h5(strong(tagList(h5(span("Spotify Data Importer for",style="color:green"), a("NodeXL", href = "https://www.nodexl.com/"))))), | |
theme = my_theme, collapsible = T, setBackgroundImage(src = "music.jpg"), | |
# add marquee visual element | |
tags$html(HTML("<marquee direction = right scrollamount = '12' style = 'color:green; font-size:17px;'><strong>Spotify Data Importer For <span style='color:red'>NodeXL</span></strong></marquee>"), | |
), | |
# Add social media icons to navbar | |
tags$style(".navbar-nav.socialmedia { display: flex; justify-content: right; flex-direction:row; padding: 5px; font-size: 20px; }"), | |
tags$div(class = "navbar-nav socialmedia", | |
tags$a(href = "https://www.github.com/Ifeanyi55", target = "_blank", icon("github", lib = "font-awesome"))), | |
tabPanel( | |
id = "tabOne", value = "oneTab", title = strong("Home"), icon = icon("home"), | |
sidebarLayout( | |
sidebarPanel( | |
id = "side", width = 3, h4(strong("Credentials")), hr(), | |
textInput("client_id", strong("Enter Client ID")), | |
textInput("client_secret", strong("Enter Client SECRET")), br(), | |
actionButton("validate", strong("Authenticate"), icon = icon("caret-right")), br(),hr(), | |
textOutput("valout") | |
), | |
mainPanel( | |
id = "main", width = 8, | |
span(style = "color:blue;",h5(strong(p(id = "dateclock")))),br(), | |
h2(strong("Welcome to the NodeXL Spotify Data Importer!")), | |
p(h5(strong("Before you begin scraping data, you will need to complete the steps below:"))), hr(), | |
p(h5(strong(tagList("STEP 1: Go to", a("https://developer.spotify.com/dashboard/", href = "https://developer.spotify.com/dashboard/"), "and login with your credentials")))), br(), | |
p(h5(strong("STEP 2: Create an app, and give it a name and a description"))), br(), | |
p(h5(strong("STEP 3: Get the generated client ID and client Secret, and return here"))), br(), | |
p(h5(strong("STEP 4: Enter the client ID and client Secret in the 'Credentials' box"))), br(), | |
p(h5(strong("STEP 5: Click the 'Authenticate' button"))), br(), | |
p(h5(strong("STEP 6: Wait for the system to authenticate your credentials and print out a reference ID"))), br(), | |
p(h5(strong("Great! You can now proceed to scraping network data via the Spotify API."))), | |
actionButton("nextTab", strong("Proceed")), hr() | |
) | |
) | |
), | |
tabPanel( | |
id = "tabA", value = "Atab", title = strong("Network Data"), icon = icon("table"), | |
# load and run the CSS script | |
includeCSS("style.css"), | |
# load and run the javascript script | |
includeScript("JSCode.js"), | |
sidebarLayout( | |
sidebarPanel( | |
width = 2, id = "sidebar", | |
actionButton("info", strong("Info"), icon = icon("info")), br(), br(), br(), tags$a(img(src = "spotify.png"), href = "https://open.spotify.com/"), br(), hr(), | |
textInput("id", strong("Enter Artist's Spotify Id")), | |
actionButton("run", strong("Related Data"), icon = icon("caret-right")),br(),hr(),br(), | |
h5(strong("Collaborators Data")), | |
actionButton("fetch", strong("Collab Data"), icon = icon("caret-right")),hr() | |
), | |
mainPanel( | |
# go to top button | |
spsGoTop(id = "up",right = "3%",bottom = "10%",icon = icon("arrow-up",color = "green")), | |
textInput("search", span(strong("Search Box"),style = "color:white;"), placeholder = "Search Google", width = "150px"),actionButton("search_bttn", strong("Search")),hr(), | |
fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Related Artists Network Data")))))), | |
fluidRow( | |
column(12, withSpinner(reactableOutput("network_data",width = 1000,height = 400), type = 1)), | |
), | |
fluidRow( | |
column(6, downloadButton("down_csv", strong("Download CSV"), icon = icon("download"))), | |
column(6, downloadButton("down_graphml", strong("Download GraphML"), icon = icon("download"))) | |
),br(),br(),br(), | |
fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Artists Collaboration Network Data")))))), | |
fluidRow( | |
column(12,withSpinner(reactableOutput("collabs_data", width = 1000, height = 400),type = 1)) | |
), | |
downloadButton("down_flat",strong("Download CSV"),icon = icon("download")), | |
br(), hr(), uiOutput("out") | |
) | |
) | |
), | |
tabPanel( | |
id = "tabB", value = "Btab", title = strong("80s Hits"), icon = icon("music"), | |
sidebarLayout(sidebarPanel = "", mainPanel(tags$iframe( | |
style = "border-radius:12px", | |
src = "https://open.spotify.com/embed/playlist/37i9dQZF1DXb57FjYWz00c?utm_source=generator", | |
width = "1350px", | |
height = "550px", | |
frameBorder = "0", | |
allowfullscreen = "", | |
allow = "autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture", | |
loading = "lazy" | |
))) | |
), | |
tabPanel( | |
id = "tabD", strong("NodeXL YouTube"), icon = icon("youtube"), | |
sidebarLayout(sidebarPanel(id = ""), mainPanel( | |
tags$iframe( | |
width = "620", | |
height = "350", | |
src = "https://www.youtube.com/embed/xKhYGRpbwOc", | |
title = "YouTube video player", | |
frameborder = "0", | |
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", | |
allowfullscreen = T | |
), hr(), | |
tags$iframe( | |
width = "620", | |
height = "350", | |
src = "https://www.youtube.com/embed/Gs4NPuKIXdo", | |
title = "YouTube video player", | |
frameborder = "0", | |
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", | |
allowfullscreen = T | |
), hr(), | |
tags$iframe( | |
width = "620", | |
height = "350", | |
src = "https://www.youtube.com/embed/J1W5uqAyHTg", | |
title = "YouTube video player", | |
frameborder = "0", | |
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", | |
allowfullscreen = T | |
), hr(), | |
tags$iframe( | |
width = "620", | |
height = "350", | |
src = "https://www.youtube.com/embed/zEgrruOITHw", | |
title = "YouTube video player", | |
frameborder = "0", | |
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", | |
allowfullscreen = T | |
), hr(), | |
tags$iframe( | |
width = "620", | |
height = "350", | |
src = "https://www.youtube.com/embed/pwsImFyc0lE", | |
title = "YouTube video player", | |
frameborder = "0", | |
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", | |
allowfullscreen = T | |
), hr(), | |
tags$iframe( | |
width = "620", | |
height = "350", | |
src = "https://www.youtube.com/embed/mjAq8eA7uOM", | |
title = "YouTube video player", | |
frameborder = "0", | |
allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", | |
allowfullscreen = T | |
) | |
)) | |
) | |
) | |
# define server logic required to get Spotify's network data | |
server <- function(input, output, session) { | |
# set up Spotify API credentials environment | |
authentication <- function(id, secret) { | |
client_ID <- id | |
client_secret <- secret | |
# authenticate the spotify client side | |
Sys.setenv(SPOTIFY_CLIENT_ID = client_ID) | |
Sys.setenv(SPOTIFY_CLIENT_SECRET = client_secret) | |
access_token <- get_spotify_access_token() | |
} | |
client_id <- reactive(as.character(input$client_id)) | |
client_secret <- reactive(as.character(input$client_secret)) | |
authenticate <- reactive(authentication( | |
client_id(), | |
client_secret() | |
)) | |
validation <- eventReactive(input$validate, { | |
authenticate() | |
}) | |
output$valout <- renderText({ | |
validation() | |
}) | |
# update nav bar page using the value of the tabPanel | |
# (i.e. value = "Atab") | |
observeEvent(input$nextTab, { | |
updateNavbarPage(session, inputId = "navbar", selected = "Atab") | |
}) | |
# activate the search box | |
search_input <- reactive(input$search) | |
searchGoogle <- reactive(search_google(search_input(), rlang = F)) | |
search_result <- eventReactive(input$search_bttn, { | |
searchGoogle() | |
}) | |
output$out <- renderUI({ | |
search_result() | |
}) | |
# render spotify | |
# renderUI({ | |
# tags$iframe(src = "https://open.spotify.com/") | |
# }) | |
# turn text input into a reactive object | |
id_input <- reactive({ | |
as.character(input$id) | |
}) | |
# wrap SpotifyNetwork functions in reactive wrappers | |
# related_network <- reactive({ | |
# related_artists_network(id_input()) | |
# }) | |
# artist_plot <- reactive({ | |
# artists_popularity(id_input()) | |
# }) | |
nodes_table <- reactive({ | |
related_artists_nodes(id_input()) | |
}) | |
edges_table <- reactive({ | |
related_artists_edges(id_input()) | |
}) | |
# create event reactive element for each output | |
# network_react <- eventReactive(input$run, { | |
# related_network() | |
# }) | |
# artist_react <- eventReactive(input$run, { | |
# artist_plot() | |
# }) | |
nodes_react <- eventReactive(input$run, { | |
nodes_table() | |
}) | |
edges_react <- eventReactive(input$run, { | |
edges_table() | |
}) | |
# function to wrangle nodes & edges data into a NodeXL flat file | |
create_flatTabler <- function(dfN,dfE){ | |
# scrape data from Vertex1 | |
# as.vector(data,mode) converts the returned list into a vector | |
popularity <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[3]]) | |
popularity <- as.vector(popularity,"numeric") | |
followers <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[4]]) | |
followers <- as.vector(followers,"numeric") | |
profile <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[5]]) | |
profile <- as.vector(profile,"character") | |
images <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[6]]) | |
images <- as.vector(images,"character") | |
genre <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[7]]) | |
genre <- as.vector(genre,"character") | |
# scrape data from Vertex2 | |
# as.vector(data,mode) converts the returned list into a vector | |
popularityB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[3]]) | |
popularityB <- as.vector(popularityB,"numeric") | |
followersB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[4]]) | |
followersB <- as.vector(followersB,"numeric") | |
profileB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[5]]) | |
profileB <- as.vector(profileB,"character") | |
imagesB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[6]]) | |
imagesB <- as.vector(imagesB,"character") | |
genreB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[7]]) | |
genreB <- as.vector(genreB,"character") | |
# assign scraped data for Vertex1 to new columns | |
dfE$`Vertex1 popularity` <- popularity | |
dfE$`Vertex1 followers` <- followers | |
dfE$`Vertex1 profile` <- profile | |
dfE$`Vertex1 images` <- images | |
dfE$`Vertex1 genre` <- genre | |
# assign scraped data for Vertex2 to new columns | |
dfE$`Vertex2 popularity` <- popularityB | |
dfE$`Vertex2 followers` <- followersB | |
dfE$`Vertex2 profile` <- profileB | |
dfE$`Vertex2 images` <- imagesB | |
dfE$`Vertex2 genre` <- genreB | |
dfE$`Edge Weight` <- round(dfE$`Vertex1 popularity`/dfE$`Vertex2 popularity`,2) | |
dfE <- dfE |> relocate(`Edge Weight`,.after = Vertex2) | |
return(dfE) | |
} | |
# parse edges_react to function | |
flat_file <- reactive({create_flatTabler(nodes_react(),edges_react())}) | |
# add edge metadata | |
# flat_file()["Edge Weight"] <- reactive({round(flat_file()$`Vertex1 popularity`/flat_file()$`Vertex2 popularity`,2)}) | |
# | |
# flat_file() <- flat_file() |> | |
# reactive({relocate(`Edge Weight`,.after = Vertex2)}) | |
# create flat file event reactive object | |
flat_react <- eventReactive(input$run,{ | |
flat_file() | |
}) | |
# # render outputs | |
# output$network <- renderVisNetwork({ | |
# network_react() | |
# }) | |
# | |
# output$plot <- renderPlotly({ | |
# artist_react() | |
# }) | |
# function to download nodes data file | |
output$down_csv <- downloadHandler( | |
filename = function() { | |
paste("Related_artists", ".csv", sep = "") | |
}, | |
content = function(file) { | |
write.csv(flat_react(), file) | |
} | |
) | |
output$network_data <- renderReactable({ | |
tryCatch( | |
{ | |
reactable(flat_react(), | |
theme = reactableTheme( | |
highlightColor = "#00e600", | |
borderColor = "#00e600", | |
borderWidth = 3 | |
), | |
outlined = T, | |
bordered = T, | |
filterable = T, | |
striped = T, | |
compact = T, | |
highlight = T, | |
defaultColDef = colDef( | |
align = "center", | |
headerStyle = list(background = "#00e600") | |
), | |
paginationType = "simple" | |
) | |
}, | |
error = function(e){ | |
message("There was an error!") | |
print(e) | |
} | |
) | |
}) | |
# function to generate GraphML file | |
create_graphml <- function(nodes,edges){ | |
# create new graph object | |
graph <- graph_from_data_frame(edges) | |
# add attributes to graph nodes | |
{ | |
V(graph)$Name <- nodes$name | |
V(graph)$Popularity <- nodes$popularity | |
V(graph)$Followers <- nodes$followers | |
V(graph)$Profile <- nodes$profile | |
V(graph)$Images <- nodes$images | |
V(graph)$Genre <- nodes$genre | |
} | |
return(graph) | |
} | |
# make function reactive | |
graphml_react <- reactive({ | |
create_graphml(nodes_react(), | |
edges_react())}) | |
# make function event reactive so that it is triggered | |
# by run action button | |
graphmlReact <- eventReactive(input$run,{ | |
graphml_react() | |
}) | |
# write GraphML download function | |
output$down_graphml <- downloadHandler( | |
filename = function(){ | |
paste("Related_artists",".graphml",sep = "") | |
}, | |
content = function(file){ | |
write_graph(graphmlReact(),file,format = "graphml") | |
} | |
) | |
# import get_artists_collaborators() function | |
source("Collaborators.R") | |
# wrap in reactive wrappers | |
artists_collaborations <- reactive({get_artists_collaborators(id_input())}) | |
# make event reactive | |
collabs_react <- eventReactive(input$fetch,{artists_collaborations()}) | |
output$collabs_data <- renderReactable({ | |
tryCatch( | |
{ | |
reactable(collabs_react(), | |
theme = reactableTheme( | |
highlightColor = "#3498DA", | |
borderColor = "#3498DA", | |
borderWidth = 3 | |
), | |
outlined = T, | |
bordered = T, | |
filterable = T, | |
striped = T, | |
compact = T, | |
highlight = T, | |
defaultColDef = colDef( | |
align = "center", | |
headerStyle = list(background = "#3498DA") | |
), | |
paginationType = "simple" | |
) | |
}, | |
error = function(e){ | |
message("There was an error!") | |
print(e) | |
} | |
) | |
}) | |
# activate download button | |
output$down_flat <- downloadHandler( | |
filename = function(){ | |
paste("CollabData",".csv",sep = "") | |
}, | |
content = function(file){ | |
write.csv(collabs_react(),file) | |
} | |
) | |
# function to download edges data file | |
# output$down_edges <- downloadHandler( | |
# filename = function() { | |
# paste("Edges", ".csv", sep = "") | |
# }, | |
# content = function(file) { | |
# write.csv(edges_react(), file) | |
# } | |
# ) | |
# output$edges <- renderReactable({ | |
# reactable(edges_react(), | |
# theme = reactableTheme( | |
# highlightColor = "#00FFAB", | |
# borderColor = "#00FFAB" | |
# ), | |
# outlined = T, | |
# bordered = T, | |
# filterable = T, | |
# striped = T, | |
# compact = T, | |
# highlight = T, | |
# defaultColDef = colDef( | |
# align = "center", | |
# headerStyle = list(background = "#00FFAB") | |
# ), | |
# paginationType = "simple" | |
# ) | |
# }) | |
observeEvent(input$info, { | |
shinyalert( | |
title = "About Software", closeOnEsc = T, confirmButtonCol = "#006400", | |
imageUrl = "spotify.png", | |
closeOnClickOutside = T, | |
confirmButtonText = "Got It", showConfirmButton = T, | |
animation = "pop", timer = 20000, | |
text = "The Spotify Data Importer allows a user to | |
query the Spotify API and get network data | |
of artists that are related to a particular artist. You can also get data of artists that have collaborated together. | |
It typically takes between 16 and 20 | |
seconds to get a response from the Spotify server for related | |
artists network data and more than that for artists collaboration | |
network data." | |
) | |
}) | |
observeEvent(input$fetch,{ | |
shinyalert( | |
closeOnEsc = T, | |
confirmButtonText = "Got It!", | |
confirmButtonCol = "#3498DA", | |
closeOnClickOutside = T, | |
showConfirmButton = T, | |
animation = "slide-from-top", | |
cancelButtonText = T, | |
timer = 10000, | |
text = "This may take a while to run, sorry!" | |
) | |
}) | |
} | |
# Run the application | |
shinyApp(ui = ui, server = server) | |