Ibtehaj10's picture
Upload 49 files
26187fd
# import streamlit as st
# import pandas as pd
# # Security
# #passlib,hashlib,bcrypt,scrypt
# import hashlib
# def make_hashes(password):
# return hashlib.sha256(str.encode(password)).hexdigest()
# def check_hashes(password,hashed_text):
# if make_hashes(password) == hashed_text:
# return hashed_text
# return False
# # DB Management
# import sqlite3
# conn = sqlite3.connect('data.db')
# c = conn.cursor()
# # DB Functions
# def create_usertable():
# c.execute('CREATE TABLE IF NOT EXISTS userstable(username TEXT,password TEXT)')
# def add_userdata(username,password):
# c.execute('INSERT INTO userstable(username,password) VALUES (?,?)',(username,password))
# conn.commit()
# def login_user(username,password):
# c.execute('SELECT * FROM userstable WHERE username =? AND password = ?',(username,password))
# data = c.fetchall()
# return data
# def view_all_users():
# c.execute('SELECT * FROM userstable')
# data = c.fetchall()
# return data
# def main():
# """Simple Login App"""
# st.title("Simple Login App")
# menu = ["Home","Login","SignUp"]
# choice = st.sidebar.selectbox("Menu",menu)
# if choice == "Home":
# st.subheader("Home")
# elif choice == "Login":
# st.subheader("Login Section")
# username = st.sidebar.text_input("User Name")
# password = st.sidebar.text_input("Password",type='password')
# if st.sidebar.checkbox("Login"):
# # if password == '12345':
# create_usertable()
# hashed_pswd = make_hashes(password)
# result = login_user(username,check_hashes(password,hashed_pswd))
# if result:
# st.success("Logged In as {}".format(username))
# task = st.selectbox("Task",["Add Post","Analytics","Profiles"])
# if task == "Add Post":
# st.subheader("Add Your Post")
# elif task == "Analytics":
# st.subheader("Analytics")
# elif task == "Profiles":
# st.subheader("User Profiles")
# user_result = view_all_users()
# clean_db = pd.DataFrame(user_result,columns=["Username","Password"])
# st.dataframe(clean_db)
# else:
# st.warning("Incorrect Username/Password")
# elif choice == "SignUp":
# st.subheader("Create New Account")
# new_user = st.text_input("Username")
# new_password = st.text_input("Password",type='password')
# if st.button("Signup"):
# create_usertable()
# add_userdata(new_user,make_hashes(new_password))
# st.success("You have successfully created a valid Account")
# st.info("Go to Login Menu to login")
# if __name__ == '__main__':
# main()
import cv2
import datetime
import imutils
import numpy as np
from centroidtracker import CentroidTracker
import pandas as pd
import torch
import streamlit as st
import mediapipe as mp
import cv2 as cv
import numpy as np
import tempfile
import time
from PIL import Image
import pandas as pd
import torch
import base64
import streamlit.components.v1 as components
import csv
import pickle
from pathlib import Path
import streamlit_authenticator as stauth
import os
import csv
# x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x
data = ["student Count",'Date','Id','Mobile','Watch']
with open('final.csv', 'w') as file:
writer = csv.writer(file)
writer.writerow(data)
import streamlit as st
import pandas as pd
import hashlib
import sqlite3
# if st.button("Open CRM !!"):
# # Security
# #passlib,hashlib,bcrypt,scrypt
# def make_hashes(password):
# return hashlib.sha256(str.encode(password)).hexdigest()
# def check_hashes(password,hashed_text):
# if make_hashes(password) == hashed_text:
# return hashed_text
# return False
# # DB Management
# conn = sqlite3.connect('data.db')
# c = conn.cursor()
# # DB Functions
# def create_usertable():
# c.execute('CREATE TABLE IF NOT EXISTS userstable(username TEXT,password TEXT)')
# def add_userdata(username,password):
# c.execute('INSERT INTO userstable(username,password) VALUES (?,?)',(username,password))
# conn.commit()
# def login_user(username,password):
# c.execute('SELECT * FROM userstable WHERE username =? AND password = ?',(username,password))
# data = c.fetchall()
# return data
# def view_all_users():
# c.execute('SELECT * FROM userstable')
# data = c.fetchall()
# return data
# def main():
# """Simple Login App"""
# st.title("Simple Login App")
# menu = ["Home","Login","SignUp"]
# choice = st.sidebar.selectbox("Menu",menu)
# if choice == "Home":
# st.subheader("Home")
# elif choice == "Login":
# st.subheader("Login Section")
# username = st.sidebar.text_input("User Name")
# password = st.sidebar.text_input("Password",type='password')
# if st.sidebar.checkbox("Login"):
# # if password == '12345':
# create_usertable()
# hashed_pswd = make_hashes(password)
# result = login_user(username,check_hashes(password,hashed_pswd))
# if result:
# st.success("Logged In as {}".format(username))
# # task = st.selectbox("Task",["Add Post","Analytics","Profiles"])
# # if task == "Add Post":
# # st.subheader("Add Your Post")
# # elif task == "Analytics":
# # st.subheader("Analytics")
# # elif task == "Profiles":
# # st.subheader("User Profiles")
# # user_result = view_all_users()
# # clean_db = pd.DataFrame(user_result,columns=["Username","Password"])
# # st.dataframe(clean_db)
# else:
# st.warning("Incorrect Username/Password")
# elif choice == "SignUp":
# st.subheader("Create New Account")
# new_user = st.text_input("Username")
# new_password = st.text_input("Password",type='password')
# if st.button("Signup"):
# create_usertable()
# add_userdata(new_user,make_hashes(new_password))
# st.success("You have successfully created a valid Account")
# st.info("Go to Login Menu to login")
# if __name__ == '__main__':
# main()
date_time = time.strftime("%b %d %Y %-I:%M %p")
date = date_time.split()
dates = date[0:3]
times = date[3:5]
# x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
def non_max_suppression_fast(boxes, overlapThresh):
try:
if len(boxes) == 0:
return []
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
overlap = (w * h) / area[idxs[:last]]
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
return boxes[pick].astype("int")
except Exception as e:
print("Exception occurred in non_max_suppression : {}".format(e))
protopath = "MobileNetSSD_deploy.prototxt"
modelpath = "MobileNetSSD_deploy.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
# Only enable it if you are using OpenVino environment
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
width: 350px
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
width: 350px
margin-left: -350px
}
</style>
""",
unsafe_allow_html=True,
)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Create Sidebar
st.sidebar.title('FaceMesh Sidebar')
st.sidebar.subheader('Parameter')
# Define available pages in selection box
app_mode = st.sidebar.selectbox(
'App Mode',
['About','Application']
)
# Resize Images to fit Container
@st.cache()
# Get Image Dimensions
def image_resize(image, width=None, height=None, inter=cv.INTER_AREA):
dim = None
(h,w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = width/float(w)
dim = (int(w*r),height)
else:
r = width/float(w)
dim = width, int(h*r)
# Resize image
resized = cv.resize(image,dim,interpolation=inter)
return resized
# About Page
# authenticator.logout('Logout','sidebar')
if app_mode == 'About':
st.title('About Product And Team')
st.markdown('''
Imran Bhai Project
''')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
width: 350px
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
width: 350px
margin-left: -350px
}
</style>
""",
unsafe_allow_html=True,
)
elif app_mode == 'Application':
st.set_option('deprecation.showfileUploaderEncoding', False)
use_webcam = st.button('Use Webcam')
# record = st.sidebar.checkbox("Record Video")
# if record:
# st.checkbox('Recording', True)
# drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
# st.sidebar.markdown('---')
# ## Add Sidebar and Window style
# st.markdown(
# """
# <style>
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
# width: 350px
# }
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
# width: 350px
# margin-left: -350px
# }
# </style>
# """,
# unsafe_allow_html=True,
# )
# max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1)
# st.sidebar.markdown('---')
# detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5)
# tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5)
# st.sidebar.markdown('---')
## Get Video
stframe = st.empty()
video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v'])
temp_file = tempfile.NamedTemporaryFile(delete=False)
if not video_file_buffer:
if use_webcam:
video = cv.VideoCapture(0)
else:
try:
video = cv.VideoCapture(1)
temp_file.name = video
except:
pass
else:
temp_file.write(video_file_buffer.read())
video = cv.VideoCapture(temp_file.name)
width = int(video.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT))
fps_input = int(video.get(cv.CAP_PROP_FPS))
## Recording
codec = cv.VideoWriter_fourcc('a','v','c','1')
out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height))
st.sidebar.text('Input Video')
# st.sidebar.video(temp_file.name)
fps = 0
i = 0
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6)
with kpil:
st.markdown('**Frame Rate**')
kpil_text = st.markdown('0')
with kpil2:
st.markdown('**detection ID**')
kpil2_text = st.markdown('0')
with kpil3:
st.markdown('**Mobile**')
kpil3_text = st.markdown('0')
with kpil4:
st.markdown('**Watch**')
kpil4_text = st.markdown('0')
with kpil5:
st.markdown('**Count**')
kpil5_text = st.markdown('0')
with kpil6:
st.markdown('**Img Res**')
kpil6_text = st.markdown('0')
st.markdown('<hr/>', unsafe_allow_html=True)
# try:
def main():
db = {}
# cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4')
path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite'
#count=0
custom = 'yolov5s'
model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True)
b=model.names[0] = 'person'
mobile = model.names[67] = 'cell phone'
watch = model.names[75] = 'clock'
fps_start_time = datetime.datetime.now()
fps = 0
size=416
count=0
counter=0
color=(0,0,255)
cy1=250
offset=6
pt1 = (120, 100)
pt2 = (980, 1150)
color = (0, 255, 0)
pt3 = (283, 103)
pt4 = (1500, 1150)
cy2 = 500
color = (0, 255, 0)
total_frames = 0
prevTime = 0
cur_frame = 0
count=0
counter=0
fps_start_time = datetime.datetime.now()
fps = 0
total_frames = 0
lpc_count = 0
opc_count = 0
object_id_list = []
# success = True
if st.button("Detect"):
try:
while video.isOpened():
ret, frame = video.read()
frame = imutils.resize(frame, width=600)
total_frames = total_frames + 1
(H, W) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
detector.setInput(blob)
person_detections = detector.forward()
rects = []
for i in np.arange(0, person_detections.shape[2]):
confidence = person_detections[0, 0, i, 2]
if confidence > 0.5:
idx = int(person_detections[0, 0, i, 1])
if CLASSES[idx] != "person":
continue
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = person_box.astype("int")
rects.append(person_box)
boundingboxes = np.array(rects)
boundingboxes = boundingboxes.astype(int)
rects = non_max_suppression_fast(boundingboxes, 0.3)
objects = tracker.update(rects)
for (objectId, bbox) in objects.items():
x1, y1, x2, y2 = bbox
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
text = "ID: {}".format(objectId)
# print(text)
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
if objectId not in object_id_list:
object_id_list.append(objectId)
fps_end_time = datetime.datetime.now()
time_diff = fps_end_time - fps_start_time
if time_diff.seconds == 0:
fps = 0.0
else:
fps = (total_frames / time_diff.seconds)
fps_text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
lpc_count = len(objects)
opc_count = len(object_id_list)
lpc_txt = "LPC: {}".format(lpc_count)
opc_txt = "OPC: {}".format(opc_count)
count += 1
if count % 4 != 0:
continue
# frame=cv.resize(frame, (600,500))
# cv2.line(frame, pt1, pt2,color,2)
# cv2.line(frame, pt3, pt4,color,2)
results = model(frame,size)
components = results.pandas().xyxy[0]
for index, row in results.pandas().xyxy[0].iterrows():
x1 = int(row['xmin'])
y1 = int(row['ymin'])
x2 = int(row['xmax'])
y2 = int(row['ymax'])
confidence = (row['confidence'])
obj = (row['class'])
# min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj}
# if lpc_txt is not None:
# try:
# db["student Count"] = [lpc_txt]
# except:
# db["student Count"] = ['N/A']
if obj == 0:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
rectcenter = int(rectx1),int(recty1)
cx = rectcenter[0]
cy = rectcenter[1]
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
db["student Count"] = [lpc_txt]
db['Date'] = [date_time]
db['id'] = ['N/A']
db['Mobile']=['N/A']
db['Watch'] = ['N/A']
if cy<(cy1+offset) and cy>(cy1-offset):
DB = []
counter+=1
DB.append(counter)
ff = DB[-1]
fx = str(ff)
# cv2.line(frame, pt1, pt2,(0, 0, 255),2)
# if cy<(cy2+offset) and cy>(cy2-offset):
# cv2.line(frame, pt3, pt4,(0, 0, 255),2)
font = cv2.FONT_HERSHEY_TRIPLEX
cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4)
cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4)
kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True)
db['id'] = [text]
if obj == 67:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
rectcenter = int(rectx1),int(recty1)
cx = rectcenter[0]
cy = rectcenter[1]
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True)
db['Mobile']=mobile+' '+text
if obj == 75:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
rectcenter = int(rectx1),int(recty1)
cx = rectcenter[0]
cy = rectcenter[1]
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True)
db['Watch']=watch
kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True)
kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True)
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>",
unsafe_allow_html=True)
frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8)
frame = image_resize(image=frame, width=640)
stframe.image(frame,channels='BGR', use_column_width=True)
df = pd.DataFrame(db)
df.to_csv('final.csv',mode='a',header=False,index=False)
except:
pass
with open('final.csv') as f:
st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv')
os.remove("final.csv")
main()