cheating-detection-FYP / cat_dog_detection.py
Ibtehaj10's picture
Upload 49 files
0ba3ad4
import cv2
import numpy as np
import imutils
protopath = "MobileNetSSD_deploy.prototxt"
modelpath = "MobileNetSSD_deploy.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
def main():
image = cv2.imread('dog.jpg')
image = imutils.resize(image, width=600)
(H, W) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5)
detector.setInput(blob)
person_detections = detector.forward()
for i in np.arange(0, person_detections.shape[2]):
confidence = person_detections[0, 0, i, 2]
if confidence > 0.5:
idx = int(person_detections[0, 0, i, 1])
if CLASSES[idx] != "dog":
continue
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = person_box.astype("int")
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
cv2.imshow("Results", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
main()