Spaces:
Runtime error
Runtime error
IbrahimHasani
commited on
Commit
•
2c5687c
1
Parent(s):
53189f9
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,19 @@ import torch
|
|
3 |
import numpy as np
|
4 |
from transformers import AutoProcessor, AutoModel
|
5 |
from PIL import Image
|
6 |
-
from decord import VideoReader, cpu
|
7 |
|
8 |
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
9 |
CLIP_LEN = 32
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
12 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
13 |
-
model = AutoModel.from_pretrained(MODEL_NAME)
|
|
|
14 |
|
15 |
def sample_uniform_frame_indices(clip_len, seg_len):
|
16 |
if seg_len < clip_len:
|
@@ -23,7 +28,9 @@ def sample_uniform_frame_indices(clip_len, seg_len):
|
|
23 |
return np.array(indices).astype(np.int64)
|
24 |
|
25 |
def read_video_decord(file_path, indices):
|
26 |
-
|
|
|
|
|
27 |
video = vr.get_batch(indices).asnumpy()
|
28 |
return video
|
29 |
|
@@ -55,6 +62,9 @@ def model_interface(uploaded_video, activity):
|
|
55 |
padding=True,
|
56 |
)
|
57 |
|
|
|
|
|
|
|
58 |
with torch.no_grad():
|
59 |
outputs = model(**inputs)
|
60 |
|
@@ -66,13 +76,13 @@ def model_interface(uploaded_video, activity):
|
|
66 |
max_prob_index = torch.argmax(probs[0]).item()
|
67 |
for i in range(len(activities_list)):
|
68 |
current_activity = activities_list[i]
|
69 |
-
prob = float(probs[0][i])
|
70 |
-
logit = float(logits_per_video[0][i])
|
71 |
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
|
72 |
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
|
73 |
|
74 |
likely_label = activities_list[max_prob_index]
|
75 |
-
likely_probability = float(probs[0][max_prob_index]) * 100
|
76 |
|
77 |
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
|
78 |
|
|
|
3 |
import numpy as np
|
4 |
from transformers import AutoProcessor, AutoModel
|
5 |
from PIL import Image
|
6 |
+
from decord import VideoReader, cpu, gpu
|
7 |
|
8 |
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
9 |
CLIP_LEN = 32
|
10 |
|
11 |
+
# Check for GPU availability
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
print (device)
|
14 |
+
|
15 |
+
# Load model and processor once and move them to the GPU
|
16 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
17 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
|
18 |
+
model.eval()
|
19 |
|
20 |
def sample_uniform_frame_indices(clip_len, seg_len):
|
21 |
if seg_len < clip_len:
|
|
|
28 |
return np.array(indices).astype(np.int64)
|
29 |
|
30 |
def read_video_decord(file_path, indices):
|
31 |
+
# Use GPU for video decoding if available
|
32 |
+
vr_ctx = cpu(0)
|
33 |
+
vr = VideoReader(file_path, num_threads=1, ctx=vr_ctx)
|
34 |
video = vr.get_batch(indices).asnumpy()
|
35 |
return video
|
36 |
|
|
|
62 |
padding=True,
|
63 |
)
|
64 |
|
65 |
+
# Move inputs to GPU
|
66 |
+
inputs = {name: tensor.to(device) for name, tensor in inputs.items()}
|
67 |
+
|
68 |
with torch.no_grad():
|
69 |
outputs = model(**inputs)
|
70 |
|
|
|
76 |
max_prob_index = torch.argmax(probs[0]).item()
|
77 |
for i in range(len(activities_list)):
|
78 |
current_activity = activities_list[i]
|
79 |
+
prob = float(probs[0][i].cpu())
|
80 |
+
logit = float(logits_per_video[0][i].cpu())
|
81 |
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
|
82 |
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
|
83 |
|
84 |
likely_label = activities_list[max_prob_index]
|
85 |
+
likely_probability = float(probs[0][max_prob_index].cpu()) * 100
|
86 |
|
87 |
return concatenated_image, results_probs, results_logits, [ likely_label , likely_probability ]
|
88 |
|