IbrahimHasani's picture
Update app.py
c0f4f61
raw
history blame
4.93 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
import cv2
from concurrent.futures import ThreadPoolExecutor
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32
# Check if GPU is available and set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print (device)
# Load model and processor once and move them to the device
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
def get_video_length(file_path):
cap = cv2.VideoCapture(file_path)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return length
def read_video_opencv(file_path, indices):
frames = []
with ThreadPoolExecutor() as executor:
futures = [executor.submit(get_frame, file_path, i) for i in indices]
for future in futures:
frame = future.result()
if frame is not None:
frames.append(frame)
return frames
def get_frame(file_path, index):
cap = cv2.VideoCapture(file_path)
cap.set(cv2.CAP_PROP_POS_FRAMES, index)
ret, frame = cap.read()
cap.release()
if ret:
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return None
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def concatenate_frames(frames, clip_len):
layout = { 32: (4, 8) }
rows, cols = layout[clip_len]
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, activity):
video_length = get_video_length(uploaded_video)
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
video = read_video_opencv(uploaded_video, indices)
concatenated_image = concatenate_frames(video, CLIP_LEN)
activities_list = [activity, "other"]
inputs = processor(
text=activities_list,
videos=list(video),
return_tensors="pt",
padding=True,
)
# Move the tensors to the same device as the model
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
inputs[key] = value.to(device)
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i].cpu()) # Move tensor data to CPU for further processing
logit = float(logits_per_video[0][i].cpu()) # Move tensor data to CPU for further processing
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index].cpu()) * 100 # Move tensor data to CPU
return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]
video_folder = "Action Detection Samples"
video_files = [os.path.join(video_folder, file) for file in os.listdir(video_folder) if file.endswith('.mp4')] # considering only mp4 files
# Create examples: assuming every video is about 'dancing'
examples = [(video, "dancing") for video in video_files]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.components.Video(label="Upload a video file"),
gr.components.Textbox(default="dancing", label="Desired Activity to Recognize"),
],
outputs=[
gr.components.Image(type="pil", label="Sampled Frames"),
gr.components.Textbox(type="text", label="Probabilities"),
gr.components.Textbox(type="text", label="Raw Scores"),
gr.components.Textbox(type="text", label="Top Prediction")
],
title="Engagify's Advanced Image Recognition Suite",
description="[[V0.5.1] Video Action Recognition - Copyright Engajify 2023] [Author: Ibrahim Ali] [Method: XCLIP ZERO SHOT / SAMPLED FRAMES = 32]",
live=False,
examples=examples # Add examples to the interface
)
iface.launch()