23B712M / app.py
amosfang's picture
Update app.py
8f78a6d
raw
history blame
4.05 kB
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
# img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_model():
model_dir = 'saved_model'
detection_model = tf.saved_model.load(str(model_dir))
return detection_model
def predict(image_np):
image_np = pil_image_as_numpy_array(image_np)
image_np = np.expand_dims(image_np, axis=0)
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.60,
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
detection_model = load_model()
# Specify paths to example images
sample_images = [["test_1.jpg"],["test_9.jpg"],["test_6.jpg"],["test_7.jpg"],
["test_10.jpg"], ["test_11.jpg"],["test_8.jpg"]]
tab1 = gr.Interface(fn=predict,
inputs=gr.Image(label='Upload an expressway image', type="pil"),
outputs=gr.Image(type="pil"),
title='Blue and Yellow Taxi detection in live expressway traffic conditions (data.gov.sg)',
examples = sample_images
)
def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index):
video_reader = cv2.VideoCapture(video_in_filepath)
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = video_reader.get(cv2.CAP_PROP_FPS)
video_writer = cv2.VideoWriter(
video_out_filepath,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(frame_w, frame_h)
)
label_id_offset = 0
while True:
ret, frame = video_reader.read()
if not ret:
break # Break the loop if the video is finished
processed_frame = predict(frame, detection_model, category_index, label_id_offset)
# Convert processed frame to numpy array
processed_frame_np = np.array(processed_frame)
# Write the frame to the output video
video_writer.write(processed_frame_np)
# Release video reader and writer
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
# Function to process a video
def process_video(video_path):
output_path = "output_video.mp4" # Output path for the processed video
# Assuming you have detection_model and category_index defined
predict_on_video(video_path, output_path, detection_model, category_index)
return output_path
# Create the video processing interface
tab2 = gr.Interface(
fn=process_video,
inputs=gr.File(label="Upload a video"),
outputs=gr.File(label="output"),
title='Video Processing',
examples=["example_video.mp4"]
)
# Create a Tabbed Interface
iface = gr.Tabbed(tab1, tab2)
# Launch the interface
iface.launch(share=True)