Spaces:
Sleeping
Sleeping
import os | |
import tarfile | |
import wget | |
import numpy as np | |
import tensorflow as tf | |
from huggingface_hub import snapshot_download | |
import gradio as gr | |
from object_detection.utils import label_map_util | |
from object_detection.utils import visualization_utils as viz_utils | |
# Constants | |
REPO_ID = "wongshennan/iti107_model" | |
PATH_TO_LABELS = 'data/label_map.pbtxt' | |
# Load category index | |
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) | |
def pil_image_as_numpy_array(pil_img): | |
"""Convert PIL image to numpy array.""" | |
img_array = tf.keras.utils.img_to_array(pil_img) | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
def load_model(): | |
"""Load model from Hugging Face Hub.""" | |
download_dir = snapshot_download(REPO_ID) | |
saved_model_dir = os.path.join(download_dir, "saved_model") | |
return tf.saved_model.load(saved_model_dir) | |
def load_model2(): | |
"""Load model from a tar.gz file.""" | |
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz") | |
tarfile.open("balloon_model.tar.gz").extractall() | |
model_dir = 'saved_model' | |
return tf.saved_model.load(str(model_dir)) | |
def predict(pil_img): | |
"""Predict method for Gradio interface.""" | |
image_np = pil_image_as_numpy_array(pil_img) | |
return detect_and_visualize(image_np) | |
def detect_and_visualize(image_np): | |
"""Helper function to run object detection and visualize results.""" | |
results = detection_model(image_np) | |
result = {key: value.numpy() for key, value in results.items()} | |
label_id_offset = 0 | |
image_np_with_detections = image_np.copy() | |
viz_utils.visualize_boxes_and_labels_on_image_array( | |
image_np_with_detections[0], | |
result['detection_boxes'][0], | |
(result['detection_classes'][0] + label_id_offset).astype(int), | |
result['detection_scores'][0], | |
category_index, | |
use_normalized_coordinates=True, | |
max_boxes_to_draw=200, | |
min_score_thresh=.60, | |
agnostic_mode=False, | |
line_thickness=2) | |
return tf.keras.utils.array_to_img(image_np_with_detections[0]) | |
# Load the model | |
detection_model = load_model() | |
# Launch Gradio Interface | |
gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil") | |
).launch(share=True) | |