Spaces:
Running
Running
import os | |
import time | |
import numpy as np | |
from typing import BinaryIO, Union, Tuple, List | |
import faster_whisper | |
from faster_whisper.vad import VadOptions | |
import ctranslate2 | |
import whisper | |
import gradio as gr | |
from modules.whisper_parameter import * | |
from modules.whisper_base import WhisperBase | |
# Temporal fix of the issue : https://github.com/jhj0517/Whisper-WebUI/issues/144 | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | |
class FasterWhisperInference(WhisperBase): | |
def __init__(self): | |
super().__init__( | |
model_dir=os.path.join("models", "Whisper", "faster-whisper") | |
) | |
self.model_paths = self.get_model_paths() | |
self.available_models = self.model_paths.keys() | |
self.available_compute_types = ctranslate2.get_supported_compute_types( | |
"cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu") | |
def transcribe(self, | |
audio: Union[str, BinaryIO, np.ndarray], | |
progress: gr.Progress, | |
*whisper_params, | |
) -> Tuple[List[dict], float]: | |
""" | |
transcribe method for faster-whisper. | |
Parameters | |
---------- | |
audio: Union[str, BinaryIO, np.ndarray] | |
Audio path or file binary or Audio numpy array | |
progress: gr.Progress | |
Indicator to show progress directly in gradio. | |
*whisper_params: tuple | |
Gradio components related to Whisper. see whisper_data_class.py for details. | |
Returns | |
---------- | |
segments_result: List[dict] | |
list of dicts that includes start, end timestamps and transcribed text | |
elapsed_time: float | |
elapsed time for transcription | |
""" | |
start_time = time.time() | |
params = WhisperValues(*whisper_params) | |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type: | |
self.update_model(params.model_size, params.compute_type, progress) | |
if params.lang == "Automatic Detection": | |
params.lang = None | |
else: | |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()} | |
params.lang = language_code_dict[params.lang] | |
vad_options = VadOptions( | |
threshold=params.threshold, | |
min_speech_duration_ms=params.min_speech_duration_ms, | |
max_speech_duration_s=params.max_speech_duration_s, | |
min_silence_duration_ms=params.min_silence_duration_ms, | |
window_size_samples=params.window_size_samples, | |
speech_pad_ms=params.speech_pad_ms | |
) | |
segments, info = self.model.transcribe( | |
audio=audio, | |
language=params.lang, | |
task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe", | |
beam_size=params.beam_size, | |
log_prob_threshold=params.log_prob_threshold, | |
no_speech_threshold=params.no_speech_threshold, | |
best_of=params.best_of, | |
patience=params.patience, | |
temperature=params.temperature, | |
compression_ratio_threshold=params.compression_ratio_threshold, | |
vad_filter=params.vad_filter, | |
vad_parameters=vad_options | |
) | |
progress(0, desc="Loading audio..") | |
segments_result = [] | |
for segment in segments: | |
progress(segment.start / info.duration, desc="Transcribing..") | |
segments_result.append({ | |
"start": segment.start, | |
"end": segment.end, | |
"text": segment.text | |
}) | |
elapsed_time = time.time() - start_time | |
return segments_result, elapsed_time | |
def update_model(self, | |
model_size: str, | |
compute_type: str, | |
progress: gr.Progress | |
): | |
""" | |
Update current model setting | |
Parameters | |
---------- | |
model_size: str | |
Size of whisper model | |
compute_type: str | |
Compute type for transcription. | |
see more info : https://opennmt.net/CTranslate2/quantization.html | |
progress: gr.Progress | |
Indicator to show progress directly in gradio. | |
""" | |
progress(0, desc="Initializing Model..") | |
self.current_model_size = self.model_paths[model_size] | |
self.current_compute_type = compute_type | |
self.model = faster_whisper.WhisperModel( | |
device=self.device, | |
model_size_or_path=self.current_model_size, | |
download_root=self.model_dir, | |
compute_type=self.current_compute_type | |
) | |
def get_model_paths(self): | |
""" | |
Get available models from models path including fine-tuned model. | |
Returns | |
---------- | |
Name list of models | |
""" | |
model_paths = {model:model for model in whisper.available_models()} | |
faster_whisper_prefix = "models--Systran--faster-whisper-" | |
existing_models = os.listdir(self.model_dir) | |
wrong_dirs = [".locks"] | |
existing_models = list(set(existing_models) - set(wrong_dirs)) | |
webui_dir = os.getcwd() | |
for model_name in existing_models: | |
if faster_whisper_prefix in model_name: | |
model_name = model_name[len(faster_whisper_prefix):] | |
if model_name not in whisper.available_models(): | |
model_paths[model_name] = os.path.join(webui_dir, self.model_dir, model_name) | |
return model_paths | |