raghuv-aditya
commited on
Commit
•
e46379d
1
Parent(s):
79457ed
Upload 18 files
Browse files- .gitattributes +1 -0
- Retrieval/.DS_Store +0 -0
- Retrieval/__pycache__/bm25.cpython-311.pyc +0 -0
- Retrieval/__pycache__/tf_idf.cpython-311.pyc +0 -0
- Retrieval/__pycache__/vision.cpython-311.pyc +0 -0
- Retrieval/bm25.py +14 -0
- Retrieval/openSource.py +48 -0
- Retrieval/savedModels/.DS_Store +0 -0
- Retrieval/savedModels/bm25-1_0.pkl +3 -0
- Retrieval/savedModels/document-vision-embeddings.json +3 -0
- Retrieval/savedModels/document_matrix.pkl +3 -0
- Retrieval/savedModels/document_matrix.zip +3 -0
- Retrieval/savedModels/idf.pkl +3 -0
- Retrieval/savedModels/ids.pkl +3 -0
- Retrieval/savedModels/open_source_embeddings.pkl +3 -0
- Retrieval/savedModels/tf_idf_dict.pkl +3 -0
- Retrieval/savedModels/vocab.pkl +3 -0
- Retrieval/tf_idf.py +66 -0
- Retrieval/vision.py +174 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Datasets/mini_wiki_collection.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Datasets/mini_wiki_collection.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Retrieval/savedModels/document-vision-embeddings.json filter=lfs diff=lfs merge=lfs -text
|
Retrieval/.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
Retrieval/__pycache__/bm25.cpython-311.pyc
ADDED
Binary file (1.24 kB). View file
|
|
Retrieval/__pycache__/tf_idf.cpython-311.pyc
ADDED
Binary file (4.45 kB). View file
|
|
Retrieval/__pycache__/vision.cpython-311.pyc
ADDED
Binary file (9.7 kB). View file
|
|
Retrieval/bm25.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import joblib
|
3 |
+
from gensim.utils import simple_preprocess
|
4 |
+
from rank_bm25 import BM25Okapi
|
5 |
+
|
6 |
+
def bm25_pipeline(query, bm25_path="Retrieval/savedModels/bm25-1_0.pkl", ids_path="Retrieval/savedModels/ids.pkl", k=100):
|
7 |
+
bm25 = joblib.load(bm25_path)
|
8 |
+
ids = joblib.load(ids_path)
|
9 |
+
ranking = bm25.get_scores(simple_preprocess(query))
|
10 |
+
ranking = np.argsort(np.array(ranking))[::-1]
|
11 |
+
ranking = ranking[:k]
|
12 |
+
for j in range(len(ranking)):
|
13 |
+
ranking[j] = ids[ranking[j]]
|
14 |
+
return ranking
|
Retrieval/openSource.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tqdm import tqdm
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
8 |
+
|
9 |
+
def get_documents_from_scores(scores):
|
10 |
+
rankings = []
|
11 |
+
for score in scores:
|
12 |
+
rankings.append(score[0])
|
13 |
+
return rankings
|
14 |
+
|
15 |
+
def cosine_similarity(v1, v2):
|
16 |
+
v1 = np.array(v1)
|
17 |
+
v2 = np.array(v2)
|
18 |
+
if(np.linalg.norm(v1) != 0 and np.linalg.norm(v2) != 0):
|
19 |
+
sim = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
|
20 |
+
else:
|
21 |
+
sim = 0
|
22 |
+
return sim
|
23 |
+
|
24 |
+
def get_open_source_embeddings(documents):
|
25 |
+
documents_embeddings = []
|
26 |
+
for document in tqdm(documents):
|
27 |
+
documents_embeddings.append(model.encode(document))
|
28 |
+
return documents_embeddings
|
29 |
+
|
30 |
+
def open_source_rankings(query, document_embeddings, k):
|
31 |
+
query_embedding = model.encode(query)
|
32 |
+
scores = []
|
33 |
+
for idx, embedding in enumerate(document_embeddings):
|
34 |
+
scores.append((idx, cosine_similarity(query_embedding, embedding)))
|
35 |
+
scores = sorted(scores, key=lambda x: x[1], reverse=True)
|
36 |
+
scores = scores[:k]
|
37 |
+
rankings = get_documents_from_scores(scores)
|
38 |
+
return rankings, scores
|
39 |
+
|
40 |
+
|
41 |
+
def open_source_pipeline(query, documents_embeddings_path="Retrieval/savedModels/open_source_embeddings.pkl", ids_path="Retrieval/savedModels/ids.pkl", k=100):
|
42 |
+
document_embeddings = joblib.load(documents_embeddings_path)
|
43 |
+
ids = joblib.load(ids_path)
|
44 |
+
rankings, scores = open_source_rankings(query, document_embeddings, k)
|
45 |
+
rankings2 = []
|
46 |
+
for ranking in tqdm(rankings):
|
47 |
+
rankings2.append(ids[ranking])
|
48 |
+
return rankings2
|
Retrieval/savedModels/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Retrieval/savedModels/bm25-1_0.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ece3c19027cd35ca6dde2d4aac8412f726715b9ac135ab28ab84bdd480451c09
|
3 |
+
size 9361012
|
Retrieval/savedModels/document-vision-embeddings.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c73ac57ca7de5276aef16fc2c1ccbd47ac2aea133784264239152ef4d4820274
|
3 |
+
size 16544464
|
Retrieval/savedModels/document_matrix.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bd045763d2222b592255289eb9f269d1cba3a45ec6f73507dca3bd70a7da7ec
|
3 |
+
size 625240225
|
Retrieval/savedModels/document_matrix.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d377da907541907f1da87e18f02bf84f621f8337a2e63004c120ba049c1bc1a4
|
3 |
+
size 5911195
|
Retrieval/savedModels/idf.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f76f99e75d4b35f2e9aa06825f92f961d1a867061e242db347cfb45563c2e4f
|
3 |
+
size 1533535
|
Retrieval/savedModels/ids.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b724a3d8820d865881b964a130948e1d780f8d6bdcb0e027f9e84bd4bba8480
|
3 |
+
size 10071
|
Retrieval/savedModels/open_source_embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3588adcbde10e19ffd96ae65ea2c0d799f9a86889bdf642c1607613951c3257
|
3 |
+
size 1584194
|
Retrieval/savedModels/tf_idf_dict.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:765eed596ae38d7a54c78ecf7f60ab1e25c0da09bbf4e4e5ccbad10aa1438c6c
|
3 |
+
size 13293122
|
Retrieval/savedModels/vocab.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0cf1aa0710b6b11ecded1a4fe90e55c5502f223109713d02a4c580ea16583e6
|
3 |
+
size 986100
|
Retrieval/tf_idf.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from collections import defaultdict
|
3 |
+
from gensim.utils import simple_preprocess
|
4 |
+
from tqdm import tqdm
|
5 |
+
import joblib
|
6 |
+
|
7 |
+
|
8 |
+
def get_tf_query(query):
|
9 |
+
k = len(query)
|
10 |
+
tf_query = defaultdict(lambda: 0)
|
11 |
+
for i in range(k):
|
12 |
+
tf_query[query[i]] += 1
|
13 |
+
for token in tf_query.keys():
|
14 |
+
tf_query[token] /= k
|
15 |
+
return tf_query
|
16 |
+
|
17 |
+
def get_tf_idf_query(query, idf_dict):
|
18 |
+
query = simple_preprocess(query)
|
19 |
+
tf_idf_query = defaultdict(lambda: 0)
|
20 |
+
tf_query = get_tf_query(query)
|
21 |
+
for token in tf_query.keys():
|
22 |
+
tf_idf_query[token] = tf_query[token] * idf_dict[token]
|
23 |
+
return tf_idf_query
|
24 |
+
|
25 |
+
def get_tf_idf_vector(tf_idf_instance, vocab):
|
26 |
+
temp = []
|
27 |
+
for key in vocab.keys():
|
28 |
+
temp.append(tf_idf_instance[key])
|
29 |
+
return temp
|
30 |
+
|
31 |
+
|
32 |
+
def tf_idf_rankings(query, idf_dict, tf_idf_dict, vocab, document_matrix, k):
|
33 |
+
query_vector = np.reshape(np.array(get_tf_idf_vector(get_tf_idf_query(query, idf_dict), vocab)), (1, -1))
|
34 |
+
scores = []
|
35 |
+
dot_products = document_matrix @ query_vector.T
|
36 |
+
|
37 |
+
query_norm = np.linalg.norm(query_vector)
|
38 |
+
doc_norms = np.linalg.norm(document_matrix, axis=1, keepdims=True)
|
39 |
+
cosine_similarities = dot_products / (doc_norms * query_norm)
|
40 |
+
cosine_similarities = cosine_similarities.flatten()
|
41 |
+
rankings = np.argsort(cosine_similarities)[::-1]
|
42 |
+
rankings = rankings[:k]
|
43 |
+
scores = []
|
44 |
+
for rank in rankings:
|
45 |
+
scores.append(cosine_similarities[rank])
|
46 |
+
# scores = sorted(cosine_similarities, key=lambda x: x[1], reverse=True)
|
47 |
+
# scores = scores[:k]
|
48 |
+
# rankings = get_documents_from_scores(scores)
|
49 |
+
return rankings, scores
|
50 |
+
|
51 |
+
def tf_idf_pipeline(query, idf_dict_path="Retrieval/savedModels/idf.pkl", tf_idf_dict_path="Retrieval/savedModels/tf_idf_dict.pkl", vocab_path="Retrieval/savedModels/vocab.pkl", document_matrix_path="Retrieval/savedModels/document_matrix.pkl", ids_path="Retrieval/savedModels/ids.pkl", k=100):
|
52 |
+
idf_dict = joblib.load(idf_dict_path)
|
53 |
+
print("idf loaded...")
|
54 |
+
tf_idf_dict = joblib.load(tf_idf_dict_path)
|
55 |
+
print("tf-idf loaded...")
|
56 |
+
vocab = joblib.load(vocab_path)
|
57 |
+
print("vocab loaded...")
|
58 |
+
document_matrix = joblib.load(document_matrix_path)
|
59 |
+
print("document_matrix loaded...")
|
60 |
+
ids = joblib.load(ids_path)
|
61 |
+
print("ids loaded")
|
62 |
+
rankings, scores = tf_idf_rankings(query, idf_dict, tf_idf_dict, vocab, document_matrix, k)
|
63 |
+
rankings2 = []
|
64 |
+
for ranking in tqdm(rankings):
|
65 |
+
rankings2.append(ids[ranking])
|
66 |
+
return rankings2
|
Retrieval/vision.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tqdm import tqdm
|
3 |
+
import numpy as np
|
4 |
+
from transformers import ViTModel, ViTFeatureExtractor, ViTImageProcessor
|
5 |
+
from PIL import Image
|
6 |
+
import re
|
7 |
+
from fpdf import FPDF
|
8 |
+
from datetime import datetime
|
9 |
+
import fitz
|
10 |
+
import joblib
|
11 |
+
import json
|
12 |
+
|
13 |
+
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
14 |
+
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
|
15 |
+
|
16 |
+
def create_pdf(input_text):
|
17 |
+
# Create instance of FPDF class
|
18 |
+
pdf = FPDF()
|
19 |
+
|
20 |
+
# Add a page
|
21 |
+
pdf.add_page()
|
22 |
+
|
23 |
+
# Set font
|
24 |
+
pdf.set_font("Arial", size=10)
|
25 |
+
|
26 |
+
# Split the input text into multiple lines if necessary
|
27 |
+
# This ensures that the text fits the page and multiple pages are handled
|
28 |
+
pdf.multi_cell(0, 5, txt=input_text)
|
29 |
+
|
30 |
+
# Create a unique file name with the current time
|
31 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
32 |
+
file_name = f"temp/PDFs/{timestamp}.pdf"
|
33 |
+
|
34 |
+
# Create output directory if it doesn't exist
|
35 |
+
os.makedirs(os.path.dirname(file_name), exist_ok=True)
|
36 |
+
|
37 |
+
# Save the PDF
|
38 |
+
pdf.output(file_name)
|
39 |
+
|
40 |
+
# Return the file path
|
41 |
+
return file_name
|
42 |
+
|
43 |
+
def pdf_to_image(pdf_path, zoom=2.0):
|
44 |
+
# Open the PDF file
|
45 |
+
pdf_document = fitz.open(pdf_path)
|
46 |
+
|
47 |
+
# Create a list to store image paths
|
48 |
+
image_paths = []
|
49 |
+
|
50 |
+
# Create an 'Images' directory if it doesn't exist
|
51 |
+
os.makedirs("temp/Images", exist_ok=True)
|
52 |
+
|
53 |
+
# Iterate over PDF pages and convert each to an image
|
54 |
+
for page_num in range(len(pdf_document)):
|
55 |
+
page = pdf_document.load_page(page_num) # Load the page
|
56 |
+
|
57 |
+
# Set zoom level to improve quality
|
58 |
+
mat = fitz.Matrix(zoom, zoom) # Create a transformation matrix with the zoom level
|
59 |
+
pix = page.get_pixmap(matrix=mat) # Render the page to an image with the specified zoom
|
60 |
+
|
61 |
+
image_file = f'temp/Images/{os.path.basename(pdf_path)}_page_{page_num}.png'
|
62 |
+
pix.save(image_file) # Save the image as PNG
|
63 |
+
image_paths.append(image_file)
|
64 |
+
|
65 |
+
# Return the list containing paths of all images
|
66 |
+
return image_paths
|
67 |
+
|
68 |
+
def sanitize_text(text):
|
69 |
+
"""
|
70 |
+
Cleans and standardizes text by keeping only alphanumeric characters and spaces.
|
71 |
+
Args:
|
72 |
+
text (str): Text to sanitize.
|
73 |
+
Returns:
|
74 |
+
str: Sanitized text.
|
75 |
+
"""
|
76 |
+
if isinstance(text, str):
|
77 |
+
# Use regex to keep only alphanumeric characters and spaces
|
78 |
+
text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
|
79 |
+
# Optionally, collapse multiple spaces into a single space
|
80 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
81 |
+
return text
|
82 |
+
|
83 |
+
def text_to_images(text):
|
84 |
+
text = sanitize_text(text)
|
85 |
+
pdf_path = create_pdf(text)
|
86 |
+
image_paths = pdf_to_image(pdf_path)
|
87 |
+
return image_paths
|
88 |
+
|
89 |
+
def documents_to_images(path):
|
90 |
+
document_set = []
|
91 |
+
for filename in os.listdir(path):
|
92 |
+
file_path = os.path.join(path, filename)
|
93 |
+
if os.path.isfile(file_path):
|
94 |
+
with open(file_path, "r") as f:
|
95 |
+
content = f.read()
|
96 |
+
document_set.append(content)
|
97 |
+
document_image_paths = []
|
98 |
+
for document in document_set:
|
99 |
+
image_paths = text_to_images(document)
|
100 |
+
document_image_paths.append(image_paths)
|
101 |
+
return document_image_paths
|
102 |
+
|
103 |
+
def single_unit_embedding(text):
|
104 |
+
image_paths = text_to_images(text)
|
105 |
+
temp = []
|
106 |
+
for image_path in image_paths:
|
107 |
+
image = Image.open(image_path)
|
108 |
+
inputs = processor(images=image, return_tensors="pt")
|
109 |
+
outputs = model(**inputs)
|
110 |
+
vector = outputs.last_hidden_state.mean(dim=1).detach().numpy()
|
111 |
+
temp.append(vector)
|
112 |
+
return np.mean(np.array(temp), axis=0)
|
113 |
+
|
114 |
+
def single_image_embedding(image):
|
115 |
+
inputs = processor(images=image, return_tensors="pt")
|
116 |
+
outputs = model(**inputs)
|
117 |
+
vector = outputs.last_hidden_state.mean(dim=1).detach().numpy()
|
118 |
+
return vector
|
119 |
+
|
120 |
+
def documents_to_vision_embeddings(documents):
|
121 |
+
document_vision_embeddings = []
|
122 |
+
for document in tqdm(documents):
|
123 |
+
vector = single_unit_embedding(document)
|
124 |
+
document_vision_embeddings.append(vector)
|
125 |
+
return document_vision_embeddings
|
126 |
+
|
127 |
+
def queries_to_vision_embeddings(queries):
|
128 |
+
query_vision_embeddings = []
|
129 |
+
for query in tqdm(queries):
|
130 |
+
vector = single_unit_embedding(query)
|
131 |
+
query_vision_embeddings.append(vector)
|
132 |
+
return query_vision_embeddings
|
133 |
+
|
134 |
+
def get_documents_from_scores(scores):
|
135 |
+
rankings = []
|
136 |
+
for score in scores:
|
137 |
+
rankings.append(score[0])
|
138 |
+
return rankings
|
139 |
+
|
140 |
+
def cosine_similarity(v1, v2):
|
141 |
+
v1 = np.array(v1)
|
142 |
+
v2 = np.array(v2)
|
143 |
+
if(np.linalg.norm(v1) != 0 and np.linalg.norm(v2) != 0):
|
144 |
+
sim = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
|
145 |
+
else:
|
146 |
+
sim = 0
|
147 |
+
return sim
|
148 |
+
|
149 |
+
def vision_rankings(query_embedding, document_embeddings, k):
|
150 |
+
# query_embedding = single_unit_embedding(query)
|
151 |
+
scores = []
|
152 |
+
for idx, embedding in enumerate(document_embeddings):
|
153 |
+
scores.append((idx, cosine_similarity(query_embedding[0], embedding[0])))
|
154 |
+
scores = sorted(scores, key=lambda x: x[1], reverse=True)
|
155 |
+
scores = scores[:k]
|
156 |
+
rankings = get_documents_from_scores(scores)
|
157 |
+
return rankings, scores
|
158 |
+
|
159 |
+
|
160 |
+
def vision_pipeline(query, document_embeddings_path="Retrieval/savedModels/document-vision-embeddings.json", ids_path="Retrieval/savedModels/ids.pkl", k=100):
|
161 |
+
# document_embeddings = joblib.load(document_embeddings_path)
|
162 |
+
ids = joblib.load(ids_path)
|
163 |
+
with open(document_embeddings_path, "r") as f:
|
164 |
+
document_vision_embeddings2 = json.load(f)
|
165 |
+
document_vision_embeddings = []
|
166 |
+
for embedding in tqdm(document_vision_embeddings2):
|
167 |
+
document_vision_embeddings.append(np.array(embedding))
|
168 |
+
print("loaded embeddings")
|
169 |
+
query_embedding = single_unit_embedding(query)
|
170 |
+
rankings, scores = vision_rankings(query_embedding, document_vision_embeddings, k)
|
171 |
+
rankings2 = []
|
172 |
+
for ranking in rankings:
|
173 |
+
rankings2.append(ids[ranking])
|
174 |
+
return rankings2
|