|
import gradio as gr |
|
import json |
|
|
|
|
|
from Agents.togetherAIAgent import generate_article_from_query |
|
from Agents.wikiAgent import get_wiki_data |
|
from Agents.rankerAgent import rankerAgent |
|
from Query_Modification.QueryModification import query_Modifier, getKeywords |
|
from Ranking.RRF.RRF_implementation import reciprocal_rank_fusion_three, reciprocal_rank_fusion_six |
|
from Retrieval.tf_idf import tf_idf_pipeline |
|
from Retrieval.bm25 import bm25_pipeline |
|
from Retrieval.vision import vision_pipeline |
|
from Retrieval.openSource import open_source_pipeline |
|
from Baseline.boolean import boolean_pipeline |
|
from AnswerGeneration.getAnswer import generate_answer_withContext, generate_answer_zeroShot |
|
|
|
|
|
miniWikiCollection = json.load(open('Datasets/mini_wiki_collection.json', 'r')) |
|
miniWikiCollectionDict = {wiki['wikipedia_id']: " ".join(wiki['text']) for wiki in miniWikiCollection} |
|
|
|
def process_query(query): |
|
|
|
modified_query = query_Modifier(query) |
|
|
|
|
|
article = generate_article_from_query(query) |
|
|
|
|
|
keywords = getKeywords(query) |
|
wiki_data = get_wiki_data(keywords) |
|
|
|
|
|
boolean_ranking = boolean_pipeline(query) |
|
tf_idf_ranking = tf_idf_pipeline(query) |
|
bm25_ranking = bm25_pipeline(query) |
|
vision_ranking = vision_pipeline(query) |
|
open_source_ranking = open_source_pipeline(query) |
|
|
|
|
|
boolean_ranking_modified = boolean_pipeline(modified_query) |
|
tf_idf_ranking_modified = tf_idf_pipeline(modified_query) |
|
bm25_ranking_modified = bm25_pipeline(modified_query) |
|
vision_ranking_modified = vision_pipeline(modified_query) |
|
open_source_ranking_modified = open_source_pipeline(modified_query) |
|
|
|
|
|
tf_idf_bm25_open_RRF_Ranking = reciprocal_rank_fusion_three(tf_idf_ranking, bm25_ranking, open_source_ranking) |
|
tf_idf_bm25_open_RRF_Ranking_modified = reciprocal_rank_fusion_three(tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified) |
|
tf_idf_bm25_open_RRF_Ranking_combined = reciprocal_rank_fusion_six( |
|
tf_idf_ranking, bm25_ranking, open_source_ranking, |
|
tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified |
|
) |
|
|
|
try: |
|
agent1_context = wiki_data[0] |
|
except: |
|
agent1_context = "Can't find a Wiki article for this query." |
|
|
|
agent2_context = article |
|
|
|
try: |
|
boolean_context = miniWikiCollectionDict[boolean_ranking[0]] |
|
except: |
|
boolean_context = "Can't find a matching document for this query." |
|
|
|
tf_idf_context = miniWikiCollectionDict[tf_idf_ranking[0]] |
|
bm25_context = miniWikiCollectionDict[str(bm25_ranking[0])] |
|
vision_context = miniWikiCollectionDict[vision_ranking[0]] |
|
open_source_context = miniWikiCollectionDict[open_source_ranking[0]] |
|
|
|
boolean_context_modified = miniWikiCollectionDict[boolean_ranking_modified[0]] |
|
tf_idf_context_modified = miniWikiCollectionDict[tf_idf_ranking_modified[0]] |
|
bm25_context_modified = miniWikiCollectionDict[str(bm25_ranking_modified[0])] |
|
vision_context_modified = miniWikiCollectionDict[vision_ranking_modified[0]] |
|
open_source_context_modified = miniWikiCollectionDict[open_source_ranking_modified[0]] |
|
|
|
tf_idf_bm25_open_RRF_Ranking_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking[0]] |
|
tf_idf_bm25_open_RRF_Ranking_modified_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking_modified[0]] |
|
tf_idf_bm25_open_RRF_Ranking_combined_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking_combined[0]] |
|
|
|
|
|
agent1_answer = generate_answer_withContext(query, agent1_context) |
|
agent2_answer = generate_answer_withContext(query, agent2_context) |
|
|
|
boolean_answer = generate_answer_withContext(query, boolean_context) |
|
tf_idf_answer = generate_answer_withContext(query, tf_idf_context) |
|
bm25_answer = generate_answer_withContext(query, bm25_context) |
|
vision_answer = generate_answer_withContext(query, vision_context) |
|
open_source_answer = generate_answer_withContext(query, open_source_context) |
|
|
|
boolean_answer_modified = generate_answer_withContext(modified_query, boolean_context_modified) |
|
tf_idf_answer_modified = generate_answer_withContext(modified_query, tf_idf_context_modified) |
|
bm25_answer_modified = generate_answer_withContext(modified_query, bm25_context_modified) |
|
vision_answer_modified = generate_answer_withContext(modified_query, vision_context_modified) |
|
open_source_answer_modified = generate_answer_withContext(modified_query, open_source_context_modified) |
|
|
|
tf_idf_bm25_open_RRF_Ranking_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_context) |
|
tf_idf_bm25_open_RRF_Ranking_modified_answer = generate_answer_withContext(modified_query, tf_idf_bm25_open_RRF_Ranking_modified_context) |
|
tf_idf_bm25_open_RRF_Ranking_combined_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_combined_context) |
|
|
|
zeroShot = generate_answer_zeroShot(query) |
|
|
|
|
|
rankerAgentInput = { |
|
"query": query, |
|
"agent1": agent1_answer, |
|
"agent2": agent2_answer, |
|
"boolean": boolean_answer, |
|
"tf_idf": tf_idf_answer, |
|
"bm25": bm25_answer, |
|
"vision": vision_answer, |
|
"open_source": open_source_answer, |
|
"boolean_modified": boolean_answer_modified, |
|
"tf_idf_modified": tf_idf_answer_modified, |
|
"bm25_modified": bm25_answer_modified, |
|
"vision_modified": vision_answer_modified, |
|
"open_source_modified": open_source_answer_modified, |
|
"tf_idf_bm25_open_RRF_Ranking": tf_idf_bm25_open_RRF_Ranking_answer, |
|
"tf_idf_bm25_open_RRF_Ranking_modified": tf_idf_bm25_open_RRF_Ranking_modified_answer, |
|
"tf_idf_bm25_open_RRF_Ranking_combined": tf_idf_bm25_open_RRF_Ranking_combined_answer, |
|
"zeroShot": zeroShot |
|
} |
|
|
|
best_model, best_answer = rankerAgent(rankerAgentInput) |
|
|
|
return ( |
|
best_model, |
|
best_answer, |
|
agent1_answer, agent1_context, |
|
agent2_answer, agent2_context, |
|
boolean_answer, boolean_context, |
|
tf_idf_answer, tf_idf_context, |
|
bm25_answer, bm25_context, |
|
vision_answer, vision_context, |
|
open_source_answer, open_source_context, |
|
boolean_answer_modified, boolean_context_modified, |
|
tf_idf_answer_modified, tf_idf_context_modified, |
|
bm25_answer_modified, bm25_context_modified, |
|
vision_answer_modified, vision_context_modified, |
|
open_source_answer_modified, open_source_context_modified, |
|
tf_idf_bm25_open_RRF_Ranking_answer, tf_idf_bm25_open_RRF_Ranking_context, |
|
tf_idf_bm25_open_RRF_Ranking_modified_answer, tf_idf_bm25_open_RRF_Ranking_modified_context, |
|
tf_idf_bm25_open_RRF_Ranking_combined_answer, tf_idf_bm25_open_RRF_Ranking_combined_context, |
|
zeroShot, "Zero-shot doesn't have a context." |
|
) |
|
|
|
|
|
css = """ |
|
#fancy-column { |
|
background: linear-gradient(135deg, #1a242f, #2b3a44); /* Dark blue-gray gradient background */ |
|
padding: 20px; |
|
border-radius: 15px; |
|
} |
|
|
|
#query-input, #submit-button, #best-model-output, #best-answer-output { |
|
border-radius: 10px; /* Rounded corners */ |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3); /* Darker shadow for better contrast */ |
|
background-color: #34495e; /* Dark background for inputs */ |
|
color: #ecf0f1; /* Light text for good readability */ |
|
} |
|
|
|
#query-input:focus, #submit-button:focus, #best-model-output:focus, #best-answer-output:focus { |
|
outline: none; |
|
border: 2px solid #7f8c8d; /* Subtle accent border on focus */ |
|
} |
|
|
|
#submit-button { |
|
background-color: #16a085; /* Muted teal color for button */ |
|
color: #ecf0f1; /* Light text for button */ |
|
font-weight: bold; |
|
padding: 10px; |
|
} |
|
|
|
#submit-button:hover { |
|
background-color: #1abc9c; /* Slightly lighter teal on hover */ |
|
} |
|
|
|
#best-model-output, #best-answer-output { |
|
background-color: #2c3e50; /* Darker background for output boxes */ |
|
} |
|
|
|
#best-model-output label, #best-answer-output label, #query-input label { |
|
color: #ecf0f1; /* Light text for labels */ |
|
} |
|
""" |
|
|
|
|
|
|
|
|
|
def create_interface(): |
|
with gr.Blocks() as interface: |
|
with gr.Column(elem_id="fancy-column", scale=3): |
|
with gr.Row(): |
|
query_input = gr.Textbox(label="Enter your query", scale=3, elem_id="query-input") |
|
submit_button = gr.Button("Submit", scale=1, elem_id="submit-button") |
|
|
|
|
|
with gr.Row(): |
|
best_model_output = gr.Textbox(label="Best Model", interactive=False, scale=1.5, elem_id="best-model-output") |
|
best_answer_output = gr.Textbox(label="Best Answer", interactive=False, scale=1.5, elem_id="best-answer-output") |
|
|
|
with gr.Column(): |
|
|
|
def create_answer_row(label): |
|
if label == "Agent 1": |
|
label = "Wiki Search" |
|
elif label == "Agent 2": |
|
label = "Llama Context Generation" |
|
elif label == "Open Source Answer": |
|
label = 'MiniLM Text Embedding model' |
|
elif label == "Open Source (Modified)": |
|
label = 'MiniLM Text Embedding model (Modified)' |
|
elif label == "TF-IDF + BM25 + Open RRF": |
|
label = "RRF (TF-IDF + BM25 + MiniLM)" |
|
elif label == "TF-IDF + BM25 + Open RRF (Modified)": |
|
label = "RRF (TF-IDF + BM25 + MiniLM) (Modified)" |
|
elif label == "TF-IDF + BM25 + Open RRF (Combined)": |
|
label = "RRF (TF-IDF + BM25 + MiniLM) (Combined)" |
|
with gr.Row(): |
|
answer_textbox = gr.Textbox(label=f"{label} Answer", interactive=False, scale=1.2, elem_id="best-model-output") |
|
context_textbox = gr.Textbox(label=f"{label} Context", scale=1.8, elem_id="best-answer-output") |
|
|
|
return answer_textbox, context_textbox |
|
|
|
agent1_output, agent1_context_output = create_answer_row("Agent 1") |
|
agent2_output, agent2_context_output = create_answer_row("Agent 2") |
|
boolean_output, boolean_context_output = create_answer_row("Boolean") |
|
tf_idf_output, tf_idf_context_output = create_answer_row("TF-IDF") |
|
bm25_output, bm25_context_output = create_answer_row("BM25") |
|
vision_output, vision_context_output = create_answer_row("Vision") |
|
open_source_output, open_source_context_output = create_answer_row("Open Source") |
|
|
|
boolean_mod_output, boolean_mod_context_output = create_answer_row("Boolean (Modified)") |
|
tf_idf_mod_output, tf_idf_mod_context_output = create_answer_row("TF-IDF (Modified)") |
|
bm25_mod_output, bm25_mod_context_output = create_answer_row("BM25 (Modified)") |
|
vision_mod_output, vision_mod_context_output = create_answer_row("Vision (Modified)") |
|
open_source_mod_output, open_source_mod_context_output = create_answer_row("Open Source (Modified)") |
|
|
|
tf_idf_rrf_output, tf_idf_rrf_context_output = create_answer_row("TF-IDF + BM25 + Open RRF") |
|
tf_idf_rrf_mod_output, tf_idf_rrf_mod_context_output = create_answer_row("TF-IDF + BM25 + Open RRF (Modified)") |
|
tf_idf_rrf_combined_output, tf_idf_rrf_combined_context_output = create_answer_row("TF-IDF + BM25 + Open RRF (Combined)") |
|
|
|
zero_shot_output, zero_shot_context_output = create_answer_row("Zero Shot") |
|
|
|
submit_button.click( |
|
fn=process_query, |
|
inputs=query_input, |
|
outputs=[ |
|
best_model_output, |
|
best_answer_output, |
|
agent1_output, agent1_context_output, |
|
agent2_output, agent2_context_output, |
|
boolean_output, boolean_context_output, |
|
tf_idf_output, tf_idf_context_output, |
|
bm25_output, bm25_context_output, |
|
vision_output, vision_context_output, |
|
open_source_output, open_source_context_output, |
|
boolean_mod_output, boolean_mod_context_output, |
|
tf_idf_mod_output, tf_idf_mod_context_output, |
|
bm25_mod_output, bm25_mod_context_output, |
|
vision_mod_output, vision_mod_context_output, |
|
open_source_mod_output, open_source_mod_context_output, |
|
tf_idf_rrf_output, tf_idf_rrf_context_output, |
|
tf_idf_rrf_mod_output, tf_idf_rrf_mod_context_output, |
|
tf_idf_rrf_combined_output, tf_idf_rrf_combined_context_output, |
|
zero_shot_output, zero_shot_context_output |
|
] |
|
) |
|
|
|
return interface |
|
|
|
|
|
if __name__ == "__main__": |
|
interface = create_interface() |
|
interface.css = css |
|
interface.launch() |
|
|