yash9439's picture
Updating Ranker Agent
b7e46f3 verified
import json
import os
from together import Together
# def rerank_best_answer(json_files, config_file='config.json', model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"):
# # Load API key from configuration file
# together_ai_key = os.getenv("TOGETHER_AI")
# if not together_ai_key:
# raise ValueError("TOGETHER_AI environment variable not found. Please set it before running the script.")
# # Initialize Together client
# client = Together(api_key=together_ai_key)
# # Combine all JSON files into a single structure
# combined_prompts = {}
# for json_file in json_files:
# with open(json_file, 'r') as file:
# data = json.load(file)
# # Format the input for the prompt
# for item in data:
# query_id = item['query_id']
# if query_id not in combined_prompts:
# combined_prompts[query_id] = {
# "question": item['input'],
# "answers": {}
# }
# combined_prompts[query_id]["answers"][json_file] = item['response']
# responses = []
# for query_id, prompt in combined_prompts.items():
# # Generate the prompt text
# prompt_text = f"""Input JSON:
# {json.dumps(prompt, indent=4)}
# For the above question, identify which model gave the best response based on accuracy. Ensure the chosen response is an answer and not a follow-up question. Provide the output in the format:
# {{
# "best_model": "<model_name>",
# "best_answer": "<answer>"
# }}
# Just output this JSON and nothing else.
# """
# # Generate response from Together API
# response = client.chat.completions.create(
# model=model,
# messages=[{"role": "user", "content": prompt_text}],
# )
# response_content = response.choices[0].message.content
# # print(response_content)
# prompt_text_extract_bestModel = f"""Content:
# {response_content}
# Whats the best_model from above?
# """
# prompt_text_extract_bestAnswer = f"""Content:
# {response_content}
# Whats the best_answer from above?
# """
# print(prompt_text_extract_bestModel)
# print(prompt_text_extract_bestAnswer)
# response_bestModel = client.chat.completions.create(
# model=model,
# messages=[{"role": "user", "content": prompt_text_extract_bestModel}],
# )
# response_bestAnswer = client.chat.completions.create(
# model=model,
# messages=[{"role": "user", "content": prompt_text_extract_bestAnswer}],
# )
# # print({"query_id": query_id, "question": prompt["question"], "Ranker_Output": response.choices[0].message.content})
# responses.append({"query_id": query_id, "question": prompt["question"], "best_model": response_bestModel.choices[0].message.content, "best_answer": response_bestAnswer.choices[0].message.content})
# print(response_bestModel.choices[0].message.content)
# return responses
def rankerAgent(prompt, model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"):
# Load API key from configuration file
together_ai_key = os.getenv("TOGETHER_AI")
if not together_ai_key:
raise ValueError("TOGETHER_AI environment variable not found. Please set it before running the script.")
# Initialize Together client
client = Together(api_key=together_ai_key)
prompt_text = f"""Input JSON:
{json.dumps(prompt, indent=4)}
For the above question, identify which model gave the best response based on accuracy. Ensure the chosen response is an answer and not a follow-up question. The best_answer should be from the best_model only, as given in the above content. Provide the output in the format:
{{
"best_model": "<model_name>",
"best_answer": "<answer>"
}}
Just output this JSON and nothing else.
"""
# Generate response from Together API
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt_text}],
)
response_content = response.choices[0].message.content
# print(response_content)
prompt_text_extract_bestModel = f"""Content:
{response_content}
Whats the best_model from above?
"""
prompt_text_extract_bestAnswer = f"""Content:
{response_content}
Whats the best_answer from above?
"""
response_bestModel = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt_text_extract_bestModel}],
)
response_bestAnswer = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt_text_extract_bestAnswer}],
)
return response_bestModel.choices[0].message.content, response_bestAnswer.choices[0].message.content