micahg's picture
Initial file upload
609216a
raw
history blame
6.44 kB
# -*- coding: utf-8 -*-
import logging
from typing import Union
import panphon.featuretable
from epitran.epihan import Epihan, EpihanTraditional
from epitran.flite import FliteLexLookup
from epitran.puncnorm import PuncNorm
from epitran.simple import SimpleEpitran
from epitran.xsampa import XSampa
logger = logging.getLogger('epitran')
logger.setLevel(logging.WARNING)
class Epitran(object):
"""Unified interface for IPA transliteration/transcription
:param code str: ISO 639-3 plus "-" plus ISO 15924 code of the language/script pair that should be loaded
:param preproc bool: apply preprocessors
:param postproc bool: apply postprocessors
:param ligatures bool: use precomposed ligatures instead of standard IPA
:param cedict_filename str: path to file containing the CC-CEDict dictionary
:param rev boolean: use reverse transliteration
:param rev_preproc bool: if True, apply preprocessors when reverse transliterating
:param rev_postproc bool: if True, apply postprocessors when reverse transliterating
"""
special = {'eng-Latn': FliteLexLookup,
'cmn-Hans': Epihan,
'cmn-Hant': EpihanTraditional}
def __init__(self, code: str, preproc: bool=True, postproc: bool=True, ligatures: bool=False,
cedict_file: Union[bool, None]=None, rev: bool=False,
rev_preproc: bool=True, rev_postproc: bool=True, tones: bool=False):
"""Constructor method"""
if code in self.special:
self.epi = self.special[code](ligatures=ligatures, cedict_file=cedict_file, tones=tones)
else:
self.epi = SimpleEpitran(code, preproc, postproc, ligatures, rev, rev_preproc, rev_postproc, tones=tones)
self.ft = panphon.featuretable.FeatureTable()
self.xsampa = XSampa()
self.puncnorm = PuncNorm()
def transliterate(self, word: str, normpunc: bool=False, ligatures: bool=False) -> str:
"""Transliterates/transcribes a word into IPA
:param word str: word to transcribe
:param normpunc bool: if True, normalize punctuation
:param ligatures bool: if True, use precomposed ligatures instead of standard IPA
:return: An IPA string corresponding to the input orthographic string
:rtype: str
"""
return self.epi.transliterate(word, normpunc, ligatures)
def reverse_transliterate(self, ipa: str) -> str:
"""Reconstructs word from IPA. Does the reverse of transliterate()
:param ipa str: An IPA representation of a word
:return: An orthographic representation of the word
:rtype: str
"""
return self.epi.reverse_transliterate(ipa)
def strict_trans(self, word: str, normpunc:bool =False, ligatures: bool=False) -> str:
"""Transliterate a word into IPA, ignoring all characters that cannot be recognized.
:param word str: word to transcribe
:param normpunc bool, optional: if True, normalize punctuation
:param ligatures bool, optional: if True, use precomposed ligatures instead of standard IPA
:return: An IPA string corresponding to the input orthographic string, with all uncoverted characters omitted
:rtype: str
"""
return self.epi.strict_trans(word, normpunc, ligatures)
def trans_list(self, word: str, normpunc: bool=False, ligatures: bool=False) -> "list[str]":
"""Transliterates/transcribes a word into list of IPA phonemes
:param word str: word to transcribe
:param normpunc bool, optional: if True, normalize punctuation
:param ligatures bool, optional: if True, use precomposed ligatures instead of standard IPA
:return: list of IPA strings, each corresponding to a segment
:rtype: list[str]
"""
return self.ft.segs_safe(self.epi.transliterate(word, normpunc, ligatures))
def trans_delimiter(self, text: str, delimiter: str=str(' '), normpunc: bool=False, ligatures: bool=False):
"""Return IPA transliteration with a delimiter between segments
:param text str: An orthographic text
:param delimiter str, optional: A string to insert between segments
:param normpunc bool, optional: If True, normalize punctuation
:param ligatures bool, optional: If True, use precomposed ligatures instead of standard IPA
:return: String of IPA phonemes separated by `delimiter`
:rtype: str
"""
return delimiter.join(self.trans_list(text, normpunc=normpunc,
ligatures=ligatures))
def xsampa_list(self, word: str, normpunc: bool=False, ligaturize: bool=False):
"""Transliterates/transcribes a word as X-SAMPA
:param word str: An orthographic word
:param normpunc bool, optional: If True, normalize punctuation
:param ligatures bool, optional: If True, use precomposed ligatures instead of standard IPA
:return: List of X-SAMPA strings corresponding to `word`
:rtype: list[str]
"""
ipa_segs = self.ft.ipa_segs(self.epi.strict_trans(word, normpunc,
ligaturize))
return list(map(self.xsampa.ipa2xs, ipa_segs))
def word_to_tuples(self, word: str, normpunc: bool=False, _ligaturize: bool=False):
"""Given a word, returns a list of tuples corresponding to IPA segments. The "feature
vectors" form a list consisting of (segment, vector) pairs.
For IPA segments, segment is a substring of phonetic_form such that the
concatenation of all segments in the list is equal to the phonetic_form.
The vectors are a sequence of integers drawn from the set {-1, 0, 1}
where -1 corresponds to '-', 0 corresponds to '0', and 1 corresponds to
'+'.
:param word str: An orthographic word
:param normpunc bool, optional: If True, normalize punctuation
:param ligatures bool, optional: If True, use precomposed ligatures instead of standard IPA
:return: A list of tuples corresponding to IPA segments
:rtype: list[tuple[str, str, str, str, list[int]]]
"""
try:
return self.epi.word_to_tuples(word, normpunc)
except AttributeError:
raise AttributeError('Method word_to_tuples not yet implemented for this language-script pair!') from AttributeError