Spaces:
Runtime error
Runtime error
import os | |
import random | |
import uuid | |
from time import time | |
from urllib import request | |
import torch | |
import torch.nn.functional as F | |
import progressbar | |
import torchaudio | |
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead | |
from tortoise.models.diffusion_decoder import DiffusionTts | |
from tortoise.models.autoregressive import UnifiedVoice | |
from tqdm import tqdm | |
from tortoise.models.arch_util import TorchMelSpectrogram | |
from tortoise.models.clvp import CLVP | |
from tortoise.models.cvvp import CVVP | |
from tortoise.models.random_latent_generator import RandomLatentConverter | |
from tortoise.models.vocoder import UnivNetGenerator | |
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel | |
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule | |
from tortoise.utils.tokenizer import VoiceBpeTokenizer | |
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment | |
from contextlib import contextmanager | |
pbar = None | |
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models') | |
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR) | |
MODELS = { | |
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth', | |
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth', | |
'clvp2.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth', | |
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth', | |
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth', | |
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth', | |
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth', | |
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth', | |
} | |
def download_models(specific_models=None): | |
""" | |
Call to download all the models that Tortoise uses. | |
""" | |
os.makedirs(MODELS_DIR, exist_ok=True) | |
def show_progress(block_num, block_size, total_size): | |
global pbar | |
if pbar is None: | |
pbar = progressbar.ProgressBar(maxval=total_size) | |
pbar.start() | |
downloaded = block_num * block_size | |
if downloaded < total_size: | |
pbar.update(downloaded) | |
else: | |
pbar.finish() | |
pbar = None | |
for model_name, url in MODELS.items(): | |
if specific_models is not None and model_name not in specific_models: | |
continue | |
model_path = os.path.join(MODELS_DIR, model_name) | |
if os.path.exists(model_path): | |
continue | |
print(f'Downloading {model_name} from {url}...') | |
request.urlretrieve(url, model_path, show_progress) | |
print('Done.') | |
def get_model_path(model_name, models_dir=MODELS_DIR): | |
""" | |
Get path to given model, download it if it doesn't exist. | |
""" | |
if model_name not in MODELS: | |
raise ValueError(f'Model {model_name} not found in available models.') | |
model_path = os.path.join(models_dir, model_name) | |
if not os.path.exists(model_path) and models_dir == MODELS_DIR: | |
download_models([model_name]) | |
return model_path | |
def pad_or_truncate(t, length): | |
""" | |
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. | |
""" | |
if t.shape[-1] == length: | |
return t | |
elif t.shape[-1] < length: | |
return F.pad(t, (0, length-t.shape[-1])) | |
else: | |
return t[..., :length] | |
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): | |
""" | |
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. | |
""" | |
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', | |
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), | |
conditioning_free=cond_free, conditioning_free_k=cond_free_k) | |
def format_conditioning(clip, cond_length=132300, device="cuda" if not torch.backends.mps.is_available() else 'mps'): | |
""" | |
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. | |
""" | |
gap = clip.shape[-1] - cond_length | |
if gap < 0: | |
clip = F.pad(clip, pad=(0, abs(gap))) | |
elif gap > 0: | |
rand_start = random.randint(0, gap) | |
clip = clip[:, rand_start:rand_start + cond_length] | |
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) | |
return mel_clip.unsqueeze(0).to(device) | |
def fix_autoregressive_output(codes, stop_token, complain=True): | |
""" | |
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was | |
trained on and what the autoregressive code generator creates (which has no padding or end). | |
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with | |
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE | |
and copying out the last few codes. | |
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. | |
""" | |
# Strip off the autoregressive stop token and add padding. | |
stop_token_indices = (codes == stop_token).nonzero() | |
if len(stop_token_indices) == 0: | |
if complain: | |
print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " | |
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " | |
"try breaking up your input text.") | |
return codes | |
else: | |
codes[stop_token_indices] = 83 | |
stm = stop_token_indices.min().item() | |
codes[stm:] = 83 | |
if stm - 3 < codes.shape[0]: | |
codes[-3] = 45 | |
codes[-2] = 45 | |
codes[-1] = 248 | |
return codes | |
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True): | |
""" | |
Uses the specified diffusion model to convert discrete codes into a spectrogram. | |
""" | |
with torch.no_grad(): | |
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. | |
output_shape = (latents.shape[0], 100, output_seq_len) | |
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False) | |
noise = torch.randn(output_shape, device=latents.device) * temperature | |
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, | |
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}, | |
progress=verbose) | |
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] | |
def classify_audio_clip(clip): | |
""" | |
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. | |
:param clip: torch tensor containing audio waveform data (get it from load_audio) | |
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real. | |
""" | |
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4, | |
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32, | |
dropout=0, kernel_size=5, distribute_zero_label=False) | |
classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu'))) | |
clip = clip.cpu().unsqueeze(0) | |
results = F.softmax(classifier(clip), dim=-1) | |
return results[0][0] | |
def pick_best_batch_size_for_gpu(): | |
""" | |
Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give | |
you a good shot. | |
""" | |
if torch.cuda.is_available(): | |
_, available = torch.cuda.mem_get_info() | |
availableGb = available / (1024 ** 3) | |
if availableGb > 14: | |
return 16 | |
elif availableGb > 10: | |
return 8 | |
elif availableGb > 7: | |
return 4 | |
if torch.backends.mps.is_available(): | |
import psutil | |
available = psutil.virtual_memory().total | |
availableGb = available / (1024 ** 3) | |
if availableGb > 14: | |
return 16 | |
elif availableGb > 10: | |
return 8 | |
elif availableGb > 7: | |
return 4 | |
return 1 | |
class TextToSpeech: | |
""" | |
Main entry point into Tortoise. | |
""" | |
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, | |
enable_redaction=True, kv_cache=False, use_deepspeed=False, half=False, device=None, | |
tokenizer_vocab_file=None, tokenizer_basic=False): | |
""" | |
Constructor | |
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing | |
GPU OOM errors. Larger numbers generates slightly faster. | |
:param models_dir: Where model weights are stored. This should only be specified if you are providing your own | |
models, otherwise use the defaults. | |
:param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output | |
(but are still rendered by the model). This can be used for prompt engineering. | |
Default is true. | |
:param device: Device to use when running the model. If omitted, the device will be automatically chosen. | |
""" | |
self.models_dir = models_dir | |
self.autoregressive_batch_size = pick_best_batch_size_for_gpu() if autoregressive_batch_size is None else autoregressive_batch_size | |
self.enable_redaction = enable_redaction | |
self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu') | |
if torch.backends.mps.is_available(): | |
self.device = torch.device('mps') | |
if self.enable_redaction: | |
self.aligner = Wav2VecAlignment() | |
self.tokenizer = VoiceBpeTokenizer( | |
vocab_file=tokenizer_vocab_file, | |
use_basic_cleaners=tokenizer_basic, | |
) | |
self.half = half | |
if os.path.exists(f'{models_dir}/autoregressive.ptt'): | |
# Assume this is a traced directory. | |
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt') | |
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt') | |
else: | |
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, | |
model_dim=1024, | |
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False, | |
train_solo_embeddings=False).cuda().eval() | |
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False) | |
self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half) | |
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200, | |
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16, | |
layer_drop=0, unconditioned_percentage=0).cuda().eval() | |
self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', models_dir))) | |
self.vocoder = UnivNetGenerator().cuda() | |
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g']) | |
self.vocoder.eval(inference=True) | |
# Random latent generators (RLGs) are loaded lazily. | |
self.rlg_auto = None | |
self.rlg_diffusion = None | |
def get_conditioning_latents(self, voice_samples, return_mels=False): | |
""" | |
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). | |
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic | |
properties. | |
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data. | |
""" | |
with torch.no_grad(): | |
voice_samples = [v.to(self.device) for v in voice_samples] | |
auto_conds = [] | |
if not isinstance(voice_samples, list): | |
voice_samples = [voice_samples] | |
for vs in voice_samples: | |
auto_conds.append(format_conditioning(vs, device=self.device)) | |
auto_conds = torch.stack(auto_conds, dim=1) | |
self.autoregressive = self.autoregressive.to(self.device) | |
auto_latent = self.autoregressive.get_conditioning(auto_conds) | |
self.autoregressive = self.autoregressive.cpu() | |
diffusion_conds = [] | |
for sample in voice_samples: | |
# The diffuser operates at a sample rate of 24000 (except for the latent inputs) | |
sample = torchaudio.functional.resample(sample, 22050, 24000) | |
sample = pad_or_truncate(sample, 102400) | |
cond_mel = wav_to_univnet_mel(sample.to(self.device), do_normalization=False, device=self.device) | |
diffusion_conds.append(cond_mel) | |
diffusion_conds = torch.stack(diffusion_conds, dim=1) | |
self.diffusion = self.diffusion.to(self.device) | |
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds) | |
self.diffusion = self.diffusion.cpu() | |
if return_mels: | |
return auto_latent, diffusion_latent, auto_conds, diffusion_conds | |
else: | |
return auto_latent, diffusion_latent | |
def get_random_conditioning_latents(self): | |
# Lazy-load the RLG models. | |
if self.rlg_auto is None: | |
self.rlg_auto = RandomLatentConverter(1024).eval() | |
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu'))) | |
self.rlg_diffusion = RandomLatentConverter(2048).eval() | |
self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu'))) | |
with torch.no_grad(): | |
return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) | |
def tts_with_preset(self, text, preset='fast', **kwargs): | |
""" | |
Calls TTS with one of a set of preset generation parameters. Options: | |
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest). | |
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference. | |
'standard': Very good quality. This is generally about as good as you are going to get. | |
'high_quality': Use if you want the absolute best. This is not really worth the compute, though. | |
""" | |
# Use generally found best tuning knobs for generation. | |
settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, | |
'top_p': .8, | |
'cond_free_k': 2.0, 'diffusion_temperature': 1.0} | |
# Presets are defined here. | |
presets = { | |
'ultra_fast': {'num_autoregressive_samples': 1, 'diffusion_iterations': 15}, | |
'fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 50}, | |
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200}, | |
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400}, | |
} | |
settings.update(presets[preset]) | |
settings.update(kwargs) # allow overriding of preset settings with kwargs | |
return self.tts(text, **settings) | |
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None, | |
return_deterministic_state=False, | |
# autoregressive generation parameters follow | |
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500, | |
# CVVP parameters follow | |
cvvp_amount=.0, | |
# diffusion generation parameters follow | |
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, | |
**hf_generate_kwargs): | |
""" | |
Produces an audio clip of the given text being spoken with the given reference voice. | |
:param text: Text to be spoken. | |
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data. | |
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which | |
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None. | |
Conditioning latents can be retrieved via get_conditioning_latents(). | |
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. | |
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true. | |
~~AUTOREGRESSIVE KNOBS~~ | |
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP. | |
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". | |
:param temperature: The softmax temperature of the autoregressive model. | |
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. | |
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence | |
of long silences or "uhhhhhhs", etc. | |
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. | |
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. | |
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 | |
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but | |
could use some tuning. | |
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm. | |
~~CLVP-CVVP KNOBS~~ | |
:param cvvp_amount: Controls the influence of the CVVP model in selecting the best output from the autoregressive model. | |
[0,1]. Values closer to 1 mean the CVVP model is more important, 0 disables the CVVP model. | |
~~DIFFUSION KNOBS~~ | |
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine | |
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, | |
however. | |
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for | |
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output | |
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and | |
dramatically improves realism. | |
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. | |
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. | |
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k | |
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 | |
are the "mean" prediction of the diffusion network and will sound bland and smeared. | |
~~OTHER STUFF~~ | |
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer. | |
Extra keyword args fed to this function get forwarded directly to that API. Documentation | |
here: https://huggingface.co/docs/transformers/internal/generation_utils | |
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. | |
Sample rate is 24kHz. | |
""" | |
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed) | |
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) | |
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. | |
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.' | |
auto_conds = None | |
if voice_samples is not None: | |
auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True) | |
elif conditioning_latents is not None: | |
auto_conditioning, diffusion_conditioning = conditioning_latents | |
else: | |
auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents() | |
auto_conditioning = auto_conditioning.to(self.device) | |
diffusion_conditioning = diffusion_conditioning.to(self.device) | |
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k) | |
with torch.no_grad(): | |
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" | |
if verbose: | |
print("Generating autoregressive samples..") | |
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
num_return_sequences=num_autoregressive_samples, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_generate_length=max_mel_tokens, | |
**hf_generate_kwargs) | |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning | |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these | |
# results, but will increase memory usage. | |
best_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1), | |
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes, | |
torch.tensor([codes.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device), | |
return_latent=True, clip_inputs=False) | |
del auto_conditioning | |
if verbose: | |
print("Transforming autoregressive outputs into audio..") | |
wav_candidates = [] | |
latents = best_latents | |
# Find the first occurrence of the "calm" token and trim the codes to that. | |
ctokens = 0 | |
for k in range(codes.shape[-1]): | |
if codes[0, k] == calm_token: | |
ctokens += 1 | |
else: | |
ctokens = 0 | |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. | |
latents = latents[:, :k] | |
break | |
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature, | |
verbose=verbose) | |
wav = self.vocoder.inference(mel) | |
wav_candidates.append(wav.cpu()) | |
def potentially_redact(clip, text): | |
if self.enable_redaction: | |
return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) | |
return clip | |
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] | |
if len(wav_candidates) > 1: | |
res = wav_candidates | |
else: | |
res = wav_candidates[0] | |
if return_deterministic_state: | |
return res, (deterministic_seed, text, voice_samples, conditioning_latents) | |
else: | |
return res | |
def deterministic_state(self, seed=None): | |
""" | |
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be | |
reproduced. | |
""" | |
seed = int(time()) if seed is None else seed | |
torch.manual_seed(seed) | |
random.seed(seed) | |
# Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary. | |
# torch.use_deterministic_algorithms(True) | |
return seed | |