Multi-Model-OCR / app.py
IFMedTechdemo's picture
Update app.py
6b8b7fc verified
raw
history blame
8.34 kB
import os
import time
import torch
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer
)
from qwen_vl_utils import process_vision_info
# Try importing Qwen3VL if available
try:
from transformers import Qwen3VLForConditionalGeneration
except ImportError:
Qwen3VLForConditionalGeneration = None
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Chandra-OCR
MODEL_ID_V = "datalab-to/chandra"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
if Qwen3VLForConditionalGeneration:
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
else:
model_v = None
# Load Nanonets-OCR2-3B
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Dots.OCR from the local, patched directory
MODEL_PATH_D = "strangervisionhf/dots.ocr-base-fix"
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
model_d = AutoModelForCausalLM.from_pretrained(
MODEL_PATH_D,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
).eval()
# Load olmOCR-2-7B-1025
MODEL_ID_M = "allenai/olmOCR-2-7B-1025"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load DeepSeek-OCR
MODEL_ID_DS = "deepseek-ai/deepseek-ocr"
processor_ds = AutoProcessor.from_pretrained(MODEL_ID_DS, trust_remote_code=True)
model_ds = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_DS,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int, temperature: float, top_p: float,
top_k: int, repetition_penalty: float):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
Args:
model_name: Name of the OCR model to use
text: Prompt text for the model
image: PIL Image object to process
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
repetition_penalty: Penalty for repeating tokens
Yields:
tuple: (raw_text, markdown_text)
"""
# Select model and processor based on model_name
if model_name == "olmOCR-2-7B-1025":
processor = processor_m
model = model_m
elif model_name == "Nanonets-OCR2-3B":
processor = processor_x
model = model_x
elif model_name == "Chandra-OCR":
if model_v is None:
yield "Chandra-OCR model not available.", "Chandra-OCR model not available."
return
processor = processor_v
model = model_v
elif model_name == "Dots.OCR":
processor = processor_d
model = model_d
elif model_name == "DeepSeek-OCR":
processor = processor_ds
model = model_ds
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
# Prepare messages in chat format
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
# Apply chat template
prompt_full = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Process inputs
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True
).to(device)
# Setup streaming generation
streamer = TextIteratorStreamer(
processor,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
# Start generation in separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the results
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Ensure thread completes
thread.join()
# Example usage for Gradio interface
if __name__ == "__main__":
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("# Multi-Model OCR Application")
gr.Markdown("Upload an image and select a model to extract text")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=[
"olmOCR-2-7B-1025",
"Nanonets-OCR2-3B",
"Chandra-OCR",
"Dots.OCR",
"DeepSeek-OCR"
],
value="DeepSeek-OCR",
label="Select OCR Model"
)
image_input = gr.Image(type="pil", label="Upload Image")
text_input = gr.Textbox(
value="Extract all text from this image.",
label="Prompt"
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens = gr.Slider(
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
value=DEFAULT_MAX_NEW_TOKENS,
step=1,
label="Max New Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty"
)
submit_btn = gr.Button("Extract Text", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Extracted Text", lines=20)
output_markdown = gr.Markdown(label="Formatted Output")
submit_btn.click(
fn=generate_image,
inputs=[
model_selector,
text_input,
image_input,
max_tokens,
temperature,
top_p,
top_k,
repetition_penalty
],
outputs=[output_text, output_markdown]
)
demo.launch()