Spaces:
Runtime error
Runtime error
import os | |
import tempfile | |
import time | |
import gradio as gr | |
import numpy as np | |
import torch | |
import yt_dlp as youtube_dl | |
from gradio_client import Client | |
from pyannote.audio import Pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
YT_LENGTH_LIMIT_S = 36000 # limit to 1 hour YouTube files | |
SAMPLING_RATE = 16000 | |
API_URL = "https://sanchit-gandhi-whisper-jax.hf.space/" | |
# set up the Gradio client | |
client = Client(API_URL) | |
# set up the diarization pipeline | |
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=True) | |
def format_string(timestamp): | |
""" | |
Reformat a timestamp string from (HH:)MM:SS to float seconds. Note that the hour column | |
is optional, and is appended within the function if not input. | |
Args: | |
timestamp (str): | |
Timestamp in string format, either MM:SS or HH:MM:SS. | |
Returns: | |
seconds (float): | |
Total seconds corresponding to the input timestamp. | |
""" | |
split_time = timestamp.split(":") | |
split_time = [float(sub_time) for sub_time in split_time] | |
if len(split_time) == 2: | |
split_time.insert(0, 0) | |
seconds = split_time[0] * 3600 + split_time[1] * 60 + split_time[2] | |
return seconds | |
# Adapted from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
""" | |
Reformat a timestamp from a float of seconds to a string in format (HH:)MM:SS. Note that the hour | |
column is optional, and is appended in the function if the number of hours > 0. | |
Args: | |
seconds (float): | |
Total seconds corresponding to the input timestamp. | |
Returns: | |
timestamp (str): | |
Timestamp in string format, either MM:SS or HH:MM:SS. | |
""" | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds | |
def format_as_transcription(raw_segments): | |
return "\n".join( | |
[ | |
f"{chunk['speaker']} [{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in raw_segments | |
] | |
) | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_length_s = format_string(file_length) | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def align(transcription, segments, group_by_speaker=True): | |
transcription_split = transcription.split("\n") | |
# re-format transcription from string to List[Dict] | |
transcript = [] | |
for chunk in transcription_split: | |
start_end, transcription = chunk[1:].split("] ") | |
start, end = start_end.split("->") | |
transcript.append({"timestamp": (format_string(start), format_string(end)), "text": transcription}) | |
# diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...}) | |
# we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...}) | |
new_segments = [] | |
prev_segment = cur_segment = segments[0] | |
for i in range(1, len(segments)): | |
cur_segment = segments[i] | |
# check if we have changed speaker ("label") | |
if cur_segment["label"] != prev_segment["label"] and i < len(segments): | |
# add the start/end times for the super-segment to the new list | |
new_segments.append( | |
{ | |
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]}, | |
"speaker": prev_segment["label"], | |
} | |
) | |
prev_segment = segments[i] | |
# add the last segment(s) if there was no speaker change | |
new_segments.append( | |
{ | |
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]}, | |
"speaker": prev_segment["label"], | |
} | |
) | |
# get the end timestamps for each chunk from the ASR output | |
end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript]) | |
segmented_preds = [] | |
# align the diarizer timestamps and the ASR timestamps | |
for segment in new_segments: | |
# get the diarizer end timestamp | |
end_time = segment["segment"]["end"] | |
# find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here | |
upto_idx = np.argmin(np.abs(end_timestamps - end_time)) | |
if group_by_speaker: | |
segmented_preds.append( | |
{ | |
"speaker": segment["speaker"], | |
"text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]), | |
"timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]), | |
} | |
) | |
else: | |
for i in range(upto_idx + 1): | |
segmented_preds.append({"speaker": segment["speaker"], **transcript[i]}) | |
# crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin) | |
transcript = transcript[upto_idx + 1 :] | |
end_timestamps = end_timestamps[upto_idx + 1 :] | |
# final post-processing | |
transcription = format_as_transcription(segmented_preds) | |
return transcription | |
def transcribe(audio_path, group_by_speaker=True): | |
# run Whisper JAX asynchronously using Gradio client (endpoint) | |
job = client.submit( | |
audio_path, | |
"transcribe", | |
True, | |
api_name="/predict_1", | |
) | |
# run diarization while we wait for Whisper JAX | |
diarization = diarization_pipeline(audio_path) | |
segments = diarization.for_json()["content"] | |
# only fetch the transcription result after performing diarization | |
transcription, _ = job.result() | |
# align the ASR transcriptions and diarization timestamps | |
transcription = align(transcription, segments, group_by_speaker=group_by_speaker) | |
return transcription | |
def transcribe_yt(yt_url, group_by_speaker=True): | |
# run Whisper JAX asynchronously using Gradio client (endpoint) | |
job = client.submit( | |
yt_url, | |
"transcribe", | |
True, | |
api_name="/predict_2", | |
) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, SAMPLING_RATE) | |
inputs = torch.from_numpy(inputs).float() | |
inputs = inputs.unsqueeze(0) | |
diarization = diarization_pipeline( | |
{"waveform": inputs, "sample_rate": SAMPLING_RATE}, | |
) | |
segments = diarization.for_json()["content"] | |
# only fetch the transcription result after performing diarization | |
transcription, _ = job.result() | |
# align the ASR transcriptions and diarization timestamps | |
transcription = align(transcription, segments, group_by_speaker=group_by_speaker) | |
return html_embed_str, transcription | |
title = "Whisper JAX + Speaker Diarization ⚡️" | |
description = """Combine the speed of Whisper JAX with pyannote speaker diarization to transcribe meetings in super fast time. | |
""" | |
article = "Whisper large-v2 model by OpenAI. Speaker diarization model by pyannote. Whisper JAX backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face." | |
microphone = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", optional=True, type="filepath"), | |
gr.inputs.Checkbox(default=True, label="Group by speaker"), | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
) | |
audio_file = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), | |
gr.inputs.Checkbox(default=True, label="Group by speaker"), | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
) | |
youtube = gr.Interface( | |
fn=transcribe_yt, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.inputs.Checkbox(default=True, label="Group by speaker"), | |
], | |
outputs=[ | |
gr.outputs.HTML(label="Video"), | |
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
], | |
allow_flagging="never", | |
title=title, | |
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", True]], | |
cache_examples=False, | |
description=description, | |
article=article, | |
) | |
demo = gr.Blocks() | |
with demo: | |
gr.TabbedInterface([microphone, audio_file, youtube], ["Microphone", "Audio File", "YouTube"]) | |
demo.queue(concurrency_count=1, max_size=5) | |
demo.launch() | |