|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
from math import atan2 |
|
from os import listdir, path |
|
from PIL import Image as PImage |
|
|
|
OUT_W = 130 |
|
OUT_H = 170 |
|
OUT_EYE_SPACE = 64 |
|
OUT_NOSE_TOP = 72 |
|
|
|
EYE_0_IDX = 36 |
|
EYE_1_IDX = 45 |
|
|
|
haarcascade = "./models/haarcascade_frontalface_alt2.xml" |
|
face_detector = cv2.CascadeClassifier(haarcascade) |
|
|
|
LBFmodel = "./models/lbfmodel.yaml" |
|
landmark_detector = cv2.face.createFacemarkLBF() |
|
landmark_detector.loadModel(LBFmodel) |
|
|
|
NUM_OUTS = 16 |
|
all_outputs = [gr.Image(format="jpeg") for _ in range(NUM_OUTS)] |
|
|
|
def face(img_in): |
|
out_pad = NUM_OUTS * [gr.Image(visible=False)] |
|
if img_in is None: |
|
return out_pad |
|
|
|
pimg = img_in.convert("L") |
|
pimg.thumbnail((1000,1000)) |
|
imgg = np.array(pimg).copy() |
|
|
|
iw,ih = pimg.size |
|
|
|
faces = face_detector.detectMultiScale(imgg) |
|
|
|
if len(faces) < 1: |
|
return out_pad |
|
|
|
biggest_faces = faces[np.argsort(-faces[:,2])] |
|
_, landmarks = landmark_detector.fit(imgg, biggest_faces) |
|
|
|
if len(landmarks) < 1: |
|
return out_pad |
|
|
|
out_images = [] |
|
for landmark in landmarks: |
|
eye0 = np.array(landmark[0][EYE_0_IDX]) |
|
eye1 = np.array(landmark[0][EYE_1_IDX]) |
|
mid = np.mean([eye0, eye1], axis=0) |
|
|
|
eye_line = eye1 - eye0 |
|
tilt = atan2(eye_line[1], eye_line[0]) |
|
tilt_deg = 180 * tilt / np.pi |
|
|
|
scale = OUT_EYE_SPACE / abs(eye0[0] - eye1[0]) |
|
pimgs = pimg.resize((int(iw * scale), int(ih * scale)), resample=PImage.Resampling.LANCZOS) |
|
|
|
|
|
new_mid = [int(c * scale) for c in mid] |
|
crop_box = (new_mid[0] - (OUT_W // 2), |
|
new_mid[1] - OUT_NOSE_TOP, |
|
new_mid[0] + (OUT_W // 2), |
|
new_mid[1] + (OUT_H - OUT_NOSE_TOP)) |
|
|
|
img_out = pimgs.rotate(tilt_deg, center=new_mid, resample=PImage.Resampling.BICUBIC).crop(crop_box) |
|
out_images.append(gr.Image(img_out, visible=True)) |
|
|
|
out_images += out_pad |
|
return out_images[:NUM_OUTS] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
# 9103H 2024F Face Alignment Tool. |
|
## Interface for face detection, alignment, cropping\ |
|
to help create dataset for [HWXX](https://github.com/DM-GY-9103-2024F-H/). |
|
""") |
|
|
|
gr.Interface( |
|
face, |
|
inputs=gr.Image(type="pil"), |
|
outputs=all_outputs, |
|
cache_examples=True, |
|
examples=[["./imgs/03.webp"], ["./imgs/11.jpg"]] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|