Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
try: | |
from collections.abc import Iterable | |
except ImportError: | |
from collections import Iterable | |
import contextlib | |
import itertools | |
import logging | |
import re | |
import warnings | |
from typing import Optional, Tuple | |
import numpy as np | |
import torch | |
from fairseq.file_io import PathManager | |
from fairseq import utils | |
import os | |
logger = logging.getLogger(__name__) | |
def infer_language_pair(path): | |
"""Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" | |
src, dst = None, None | |
for filename in PathManager.ls(path): | |
parts = filename.split(".") | |
if len(parts) >= 3 and len(parts[1].split("-")) == 2: | |
return parts[1].split("-") | |
return src, dst | |
def collate_tokens( | |
values, | |
pad_idx, | |
eos_idx=None, | |
left_pad=False, | |
move_eos_to_beginning=False, | |
pad_to_length=None, | |
pad_to_multiple=1, | |
pad_to_bsz=None, | |
): | |
"""Convert a list of 1d tensors into a padded 2d tensor.""" | |
size = max(v.size(0) for v in values) | |
size = size if pad_to_length is None else max(size, pad_to_length) | |
if pad_to_multiple != 1 and size % pad_to_multiple != 0: | |
size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) | |
def copy_tensor(src, dst): | |
assert dst.numel() == src.numel() | |
if move_eos_to_beginning: | |
if eos_idx is None: | |
# if no eos_idx is specified, then use the last token in src | |
dst[0] = src[-1] | |
else: | |
dst[0] = eos_idx | |
dst[1:] = src[:-1] | |
else: | |
dst.copy_(src) | |
if values[0].dim() == 1: | |
res = values[0].new(len(values), size).fill_(pad_idx) | |
elif values[0].dim() == 2: | |
assert move_eos_to_beginning is False | |
res = values[0].new(len(values), size, values[0].size(1)).fill_(pad_idx) | |
else: | |
raise NotImplementedError | |
for i, v in enumerate(values): | |
copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) | |
return res | |
def load_indexed_dataset( | |
path, dictionary=None, dataset_impl=None, combine=False, default="cached" | |
): | |
"""A helper function for loading indexed datasets. | |
Args: | |
path (str): path to indexed dataset (e.g., 'data-bin/train') | |
dictionary (~fairseq.data.Dictionary): data dictionary | |
dataset_impl (str, optional): which dataset implementation to use. If | |
not provided, it will be inferred automatically. For legacy indexed | |
data we use the 'cached' implementation by default. | |
combine (bool, optional): automatically load and combine multiple | |
datasets. For example, if *path* is 'data-bin/train', then we will | |
combine 'data-bin/train', 'data-bin/train1', ... and return a | |
single ConcatDataset instance. | |
""" | |
import fairseq.data.indexed_dataset as indexed_dataset | |
from fairseq.data.concat_dataset import ConcatDataset | |
datasets = [] | |
for k in itertools.count(): | |
path_k = path + (str(k) if k > 0 else "") | |
try: | |
path_k = indexed_dataset.get_indexed_dataset_to_local(path_k) | |
except Exception as e: | |
if "StorageException: [404] Path not found" in str(e): | |
logger.warning(f"path_k: {e} not found") | |
else: | |
raise e | |
dataset_impl_k = dataset_impl | |
if dataset_impl_k is None: | |
dataset_impl_k = indexed_dataset.infer_dataset_impl(path_k) | |
dataset = indexed_dataset.make_dataset( | |
path_k, | |
impl=dataset_impl_k or default, | |
fix_lua_indexing=True, | |
dictionary=dictionary, | |
) | |
if dataset is None: | |
break | |
logger.info("loaded {:,} examples from: {}".format(len(dataset), path_k)) | |
datasets.append(dataset) | |
if not combine: | |
break | |
if len(datasets) == 0: | |
return None | |
elif len(datasets) == 1: | |
return datasets[0] | |
else: | |
return ConcatDataset(datasets) | |
def numpy_seed(seed, *addl_seeds): | |
"""Context manager which seeds the NumPy PRNG with the specified seed and | |
restores the state afterward""" | |
if seed is None: | |
yield | |
return | |
if len(addl_seeds) > 0: | |
seed = int(hash((seed, *addl_seeds)) % 1e6) | |
state = np.random.get_state() | |
np.random.seed(seed) | |
try: | |
yield | |
finally: | |
np.random.set_state(state) | |
def collect_filtered(function, iterable, filtered): | |
""" | |
Similar to :func:`filter` but collects filtered elements in ``filtered``. | |
Args: | |
function (callable): function that returns ``False`` for elements that | |
should be filtered | |
iterable (iterable): iterable to filter | |
filtered (list): list to store filtered elements | |
""" | |
for el in iterable: | |
if function(el): | |
yield el | |
else: | |
filtered.append(el) | |
def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False): | |
def compare_leq(a, b): | |
return a <= b if not isinstance(a, tuple) else max(a) <= b | |
def check_size(idx): | |
if isinstance(max_positions, float) or isinstance(max_positions, int): | |
return size_fn(idx) <= max_positions | |
elif isinstance(max_positions, dict): | |
idx_size = size_fn(idx) | |
assert isinstance(idx_size, dict) | |
intersect_keys = set(max_positions.keys()) & set(idx_size.keys()) | |
return all( | |
all( | |
a is None or b is None or a <= b | |
for a, b in zip(idx_size[key], max_positions[key]) | |
) | |
for key in intersect_keys | |
) | |
else: | |
# For MultiCorpusSampledDataset, will generalize it later | |
if not isinstance(size_fn(idx), Iterable): | |
return all(size_fn(idx) <= b for b in max_positions) | |
return all( | |
a is None or b is None or a <= b | |
for a, b in zip(size_fn(idx), max_positions) | |
) | |
ignored = [] | |
itr = collect_filtered(check_size, indices, ignored) | |
indices = np.fromiter(itr, dtype=np.int64, count=-1) | |
return indices, ignored | |
def filter_by_size(indices, dataset, max_positions, raise_exception=False): | |
""" | |
[deprecated] Filter indices based on their size. | |
Use `FairseqDataset::filter_indices_by_size` instead. | |
Args: | |
indices (List[int]): ordered list of dataset indices | |
dataset (FairseqDataset): fairseq dataset instance | |
max_positions (tuple): filter elements larger than this size. | |
Comparisons are done component-wise. | |
raise_exception (bool, optional): if ``True``, raise an exception if | |
any elements are filtered (default: False). | |
""" | |
warnings.warn( | |
"data_utils.filter_by_size is deprecated. " | |
"Use `FairseqDataset::filter_indices_by_size` instead.", | |
stacklevel=2, | |
) | |
if isinstance(max_positions, float) or isinstance(max_positions, int): | |
if hasattr(dataset, "sizes") and isinstance(dataset.sizes, np.ndarray): | |
ignored = indices[dataset.sizes[indices] > max_positions].tolist() | |
indices = indices[dataset.sizes[indices] <= max_positions] | |
elif ( | |
hasattr(dataset, "sizes") | |
and isinstance(dataset.sizes, list) | |
and len(dataset.sizes) == 1 | |
): | |
ignored = indices[dataset.sizes[0][indices] > max_positions].tolist() | |
indices = indices[dataset.sizes[0][indices] <= max_positions] | |
else: | |
indices, ignored = _filter_by_size_dynamic( | |
indices, dataset.size, max_positions | |
) | |
else: | |
indices, ignored = _filter_by_size_dynamic(indices, dataset.size, max_positions) | |
if len(ignored) > 0 and raise_exception: | |
raise Exception( | |
( | |
"Size of sample #{} is invalid (={}) since max_positions={}, " | |
"skip this example with --skip-invalid-size-inputs-valid-test" | |
).format(ignored[0], dataset.size(ignored[0]), max_positions) | |
) | |
if len(ignored) > 0: | |
logger.warning( | |
( | |
"{} samples have invalid sizes and will be skipped, " | |
"max_positions={}, first few sample ids={}" | |
).format(len(ignored), max_positions, ignored[:10]) | |
) | |
return indices | |
def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes): | |
"""Filter a list of sample indices. Remove those that are longer | |
than specified in max_sizes. | |
Args: | |
indices (np.array): original array of sample indices | |
max_sizes (int or list[int] or tuple[int]): max sample size, | |
can be defined separately for src and tgt (then list or tuple) | |
Returns: | |
np.array: filtered sample array | |
list: list of removed indices | |
""" | |
if max_sizes is None: | |
return indices, [] | |
if type(max_sizes) in (int, float): | |
max_src_size, max_tgt_size = max_sizes, max_sizes | |
else: | |
max_src_size, max_tgt_size = max_sizes | |
if tgt_sizes is None: | |
ignored = indices[src_sizes[indices] > max_src_size] | |
else: | |
ignored = indices[ | |
(src_sizes[indices] > max_src_size) | (tgt_sizes[indices] > max_tgt_size) | |
] | |
if len(ignored) > 0: | |
if tgt_sizes is None: | |
indices = indices[src_sizes[indices] <= max_src_size] | |
else: | |
indices = indices[ | |
(src_sizes[indices] <= max_src_size) | |
& (tgt_sizes[indices] <= max_tgt_size) | |
] | |
return indices, ignored.tolist() | |
def batch_by_size( | |
indices, | |
num_tokens_fn, | |
num_tokens_vec=None, | |
max_tokens=None, | |
max_sentences=None, | |
required_batch_size_multiple=1, | |
fixed_shapes=None, | |
): | |
""" | |
Yield mini-batches of indices bucketed by size. Batches may contain | |
sequences of different lengths. | |
Args: | |
indices (List[int]): ordered list of dataset indices | |
num_tokens_fn (callable): function that returns the number of tokens at | |
a given index | |
num_tokens_vec (List[int], optional): precomputed vector of the number | |
of tokens for each index in indices (to enable faster batch generation) | |
max_tokens (int, optional): max number of tokens in each batch | |
(default: None). | |
max_sentences (int, optional): max number of sentences in each | |
batch (default: None). | |
required_batch_size_multiple (int, optional): require batch size to | |
be less than N or a multiple of N (default: 1). | |
fixed_shapes (List[Tuple[int, int]], optional): if given, batches will | |
only be created with the given shapes. *max_sentences* and | |
*required_batch_size_multiple* will be ignored (default: None). | |
""" | |
try: | |
from fairseq.data.data_utils_fast import ( | |
batch_by_size_fn, | |
batch_by_size_vec, | |
batch_fixed_shapes_fast, | |
) | |
except ImportError: | |
raise ImportError( | |
"Please build Cython components with: " | |
"`python setup.py build_ext --inplace`" | |
) | |
except ValueError: | |
raise ValueError( | |
"Please build (or rebuild) Cython components with `python setup.py build_ext --inplace`." | |
) | |
# added int() to avoid TypeError: an integer is required | |
max_tokens = ( | |
int(max_tokens) if max_tokens is not None else -1 | |
) | |
max_sentences = max_sentences if max_sentences is not None else -1 | |
bsz_mult = required_batch_size_multiple | |
if not isinstance(indices, np.ndarray): | |
indices = np.fromiter(indices, dtype=np.int64, count=-1) | |
if num_tokens_vec is not None and not isinstance(num_tokens_vec, np.ndarray): | |
num_tokens_vec = np.fromiter(num_tokens_vec, dtype=np.int64, count=-1) | |
if fixed_shapes is None: | |
if num_tokens_vec is None: | |
return batch_by_size_fn( | |
indices, | |
num_tokens_fn, | |
max_tokens, | |
max_sentences, | |
bsz_mult, | |
) | |
else: | |
return batch_by_size_vec( | |
indices, | |
num_tokens_vec, | |
max_tokens, | |
max_sentences, | |
bsz_mult, | |
) | |
else: | |
fixed_shapes = np.array(fixed_shapes, dtype=np.int64) | |
sort_order = np.lexsort( | |
[ | |
fixed_shapes[:, 1].argsort(), # length | |
fixed_shapes[:, 0].argsort(), # bsz | |
] | |
) | |
fixed_shapes_sorted = fixed_shapes[sort_order] | |
return batch_fixed_shapes_fast(indices, num_tokens_fn, fixed_shapes_sorted) | |
def post_process(sentence: str, symbol: str): | |
if symbol == "sentencepiece": | |
sentence = sentence.replace(" ", "").replace("\u2581", " ").strip() | |
elif symbol == "wordpiece": | |
sentence = sentence.replace(" ", "").replace("_", " ").strip() | |
elif symbol == "letter": | |
sentence = sentence.replace(" ", "").replace("|", " ").strip() | |
elif symbol == "silence": | |
import re | |
sentence = sentence.replace("<SIL>", "") | |
sentence = re.sub(' +', ' ', sentence).strip() | |
elif symbol == "_EOW": | |
sentence = sentence.replace(" ", "").replace("_EOW", " ").strip() | |
elif symbol in {"subword_nmt", "@@ ", "@@"}: | |
if symbol == "subword_nmt": | |
symbol = "@@ " | |
sentence = (sentence + " ").replace(symbol, "").rstrip() | |
elif symbol == "none": | |
pass | |
elif symbol is not None: | |
raise NotImplementedError(f"Unknown post_process option: {symbol}") | |
return sentence | |
def compute_mask_indices( | |
shape: Tuple[int, int], | |
padding_mask: Optional[torch.Tensor], | |
mask_prob: float, | |
mask_length: int, | |
mask_type: str = "static", | |
mask_other: float = 0.0, | |
min_masks: int = 0, | |
no_overlap: bool = False, | |
min_space: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape | |
Args: | |
shape: the the shape for which to compute masks. | |
should be of size 2 where first element is batch size and 2nd is timesteps | |
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements | |
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by | |
number of timesteps divided by length of mask span to mask approximately this percentage of all elements. | |
however due to overlaps, the actual number will be smaller (unless no_overlap is True) | |
mask_type: how to compute mask lengths | |
static = fixed size | |
uniform = sample from uniform distribution [mask_other, mask_length*2] | |
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element | |
poisson = sample from possion distribution with lambda = mask length | |
min_masks: minimum number of masked spans | |
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping | |
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans | |
""" | |
bsz, all_sz = shape | |
mask = np.full((bsz, all_sz), False) | |
all_num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * all_sz / float(mask_length) | |
+ np.random.rand() | |
) | |
all_num_mask = max(min_masks, all_num_mask) | |
mask_idcs = [] | |
for i in range(bsz): | |
if padding_mask is not None: | |
sz = all_sz - padding_mask[i].long().sum().item() | |
num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * sz / float(mask_length) | |
+ np.random.rand() | |
) | |
num_mask = max(min_masks, num_mask) | |
else: | |
sz = all_sz | |
num_mask = all_num_mask | |
if mask_type == "static": | |
lengths = np.full(num_mask, mask_length) | |
elif mask_type == "uniform": | |
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) | |
elif mask_type == "normal": | |
lengths = np.random.normal(mask_length, mask_other, size=num_mask) | |
lengths = [max(1, int(round(x))) for x in lengths] | |
elif mask_type == "poisson": | |
lengths = np.random.poisson(mask_length, size=num_mask) | |
lengths = [int(round(x)) for x in lengths] | |
else: | |
raise Exception("unknown mask selection " + mask_type) | |
if sum(lengths) == 0: | |
lengths[0] = min(mask_length, sz - 1) | |
if no_overlap: | |
mask_idc = [] | |
def arrange(s, e, length, keep_length): | |
span_start = np.random.randint(s, e - length) | |
mask_idc.extend(span_start + i for i in range(length)) | |
new_parts = [] | |
if span_start - s - min_space >= keep_length: | |
new_parts.append((s, span_start - min_space + 1)) | |
if e - span_start - keep_length - min_space > keep_length: | |
new_parts.append((span_start + length + min_space, e)) | |
return new_parts | |
parts = [(0, sz)] | |
min_length = min(lengths) | |
for length in sorted(lengths, reverse=True): | |
lens = np.fromiter( | |
(e - s if e - s >= length + min_space else 0 for s, e in parts), | |
np.int, | |
) | |
l_sum = np.sum(lens) | |
if l_sum == 0: | |
break | |
probs = lens / np.sum(lens) | |
c = np.random.choice(len(parts), p=probs) | |
s, e = parts.pop(c) | |
parts.extend(arrange(s, e, length, min_length)) | |
mask_idc = np.asarray(mask_idc) | |
else: | |
min_len = min(lengths) | |
if sz - min_len <= num_mask: | |
min_len = sz - num_mask - 1 | |
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
mask_idc = np.asarray( | |
[ | |
mask_idc[j] + offset | |
for j in range(len(mask_idc)) | |
for offset in range(lengths[j]) | |
] | |
) | |
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
min_len = min([len(m) for m in mask_idcs]) | |
for i, mask_idc in enumerate(mask_idcs): | |
if len(mask_idc) > min_len: | |
mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
mask[i, mask_idc] = True | |
return mask | |
def get_mem_usage(): | |
try: | |
import psutil | |
mb = 1024 * 1024 | |
return f"used={psutil.virtual_memory().used / mb}Mb; avail={psutil.virtual_memory().available / mb}Mb" | |
except ImportError: | |
return "N/A" | |
# lens: torch.LongTensor | |
# returns: torch.BoolTensor | |
def lengths_to_padding_mask(lens): | |
bsz, max_lens = lens.size(0), torch.max(lens).item() | |
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens) | |
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens) | |
return mask | |
# lens: torch.LongTensor | |
# returns: torch.BoolTensor | |
def lengths_to_mask(lens): | |
return ~lengths_to_padding_mask(lens) | |
def get_buckets(sizes, num_buckets): | |
buckets = np.unique( | |
np.percentile( | |
sizes, | |
np.linspace(0, 100, num_buckets + 1), | |
interpolation='lower', | |
)[1:] | |
) | |
return buckets | |
def get_bucketed_sizes(orig_sizes, buckets): | |
sizes = np.copy(orig_sizes) | |
assert np.min(sizes) >= 0 | |
start_val = -1 | |
for end_val in buckets: | |
mask = (sizes > start_val) & (sizes <= end_val) | |
sizes[mask] = end_val | |
start_val = end_val | |
return sizes | |
def _find_extra_valid_paths(dataset_path: str) -> set: | |
paths = utils.split_paths(dataset_path) | |
all_valid_paths = set() | |
for sub_dir in paths: | |
contents = PathManager.ls(sub_dir) | |
valid_paths = [c for c in contents if re.match("valid*[0-9].*", c) is not None] | |
all_valid_paths |= {os.path.basename(p) for p in valid_paths} | |
# Remove .bin, .idx etc | |
roots = {os.path.splitext(p)[0] for p in all_valid_paths} | |
return roots | |
def raise_if_valid_subsets_unintentionally_ignored(train_cfg) -> None: | |
"""Raises if there are paths matching 'valid*[0-9].*' which are not combined or ignored.""" | |
if ( | |
train_cfg.dataset.ignore_unused_valid_subsets | |
or train_cfg.dataset.combine_valid_subsets | |
or train_cfg.dataset.disable_validation | |
or not hasattr(train_cfg.task, "data") | |
): | |
return | |
other_paths = _find_extra_valid_paths(train_cfg.task.data) | |
specified_subsets = train_cfg.dataset.valid_subset.split(",") | |
ignored_paths = [p for p in other_paths if p not in specified_subsets] | |
if ignored_paths: | |
advice = "Set --combine-val to combine them or --ignore-unused-valid-subsets to ignore them." | |
msg = f"Valid paths {ignored_paths} will be ignored. {advice}" | |
raise ValueError(msg) |