|
|
import torch
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
|
"""
|
|
|
Initialize the weights of a module.
|
|
|
|
|
|
Args:
|
|
|
m: The module to initialize.
|
|
|
mean: The mean of the normal distribution.
|
|
|
std: The standard deviation of the normal distribution.
|
|
|
"""
|
|
|
classname = m.__class__.__name__
|
|
|
if classname.find("Conv") != -1:
|
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
|
"""
|
|
|
Calculate the padding needed for a convolution.
|
|
|
|
|
|
Args:
|
|
|
kernel_size: The size of the kernel.
|
|
|
dilation: The dilation of the convolution.
|
|
|
"""
|
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
|
|
|
def convert_pad_shape(pad_shape):
|
|
|
"""
|
|
|
Convert the pad shape to a list of integers.
|
|
|
|
|
|
Args:
|
|
|
pad_shape: The pad shape..
|
|
|
"""
|
|
|
l = pad_shape[::-1]
|
|
|
pad_shape = [item for sublist in l for item in sublist]
|
|
|
return pad_shape
|
|
|
|
|
|
|
|
|
def slice_segments(
|
|
|
x: torch.Tensor, ids_str: torch.Tensor, segment_size: int = 4, dim: int = 2
|
|
|
):
|
|
|
"""
|
|
|
Slice segments from a tensor, handling tensors with different numbers of dimensions.
|
|
|
|
|
|
Args:
|
|
|
x (torch.Tensor): The tensor to slice.
|
|
|
ids_str (torch.Tensor): The starting indices of the segments.
|
|
|
segment_size (int, optional): The size of each segment. Defaults to 4.
|
|
|
dim (int, optional): The dimension to slice across (2D or 3D tensors). Defaults to 2.
|
|
|
"""
|
|
|
if dim == 2:
|
|
|
ret = torch.zeros_like(x[:, :segment_size])
|
|
|
elif dim == 3:
|
|
|
ret = torch.zeros_like(x[:, :, :segment_size])
|
|
|
|
|
|
for i in range(x.size(0)):
|
|
|
idx_str = ids_str[i].item()
|
|
|
idx_end = idx_str + segment_size
|
|
|
if dim == 2:
|
|
|
ret[i] = x[i, idx_str:idx_end]
|
|
|
else:
|
|
|
ret[i] = x[i, :, idx_str:idx_end]
|
|
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
|
|
"""
|
|
|
Randomly slice segments from a tensor.
|
|
|
|
|
|
Args:
|
|
|
x: The tensor to slice.
|
|
|
x_lengths: The lengths of the sequences.
|
|
|
segment_size: The size of each segment.
|
|
|
"""
|
|
|
b, d, t = x.size()
|
|
|
if x_lengths is None:
|
|
|
x_lengths = t
|
|
|
ids_str_max = x_lengths - segment_size + 1
|
|
|
ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long)
|
|
|
ret = slice_segments(x, ids_str, segment_size, dim=3)
|
|
|
return ret, ids_str
|
|
|
|
|
|
|
|
|
@torch.jit.script
|
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
|
"""
|
|
|
Fused add tanh sigmoid multiply operation.
|
|
|
|
|
|
Args:
|
|
|
input_a: The first input tensor.
|
|
|
input_b: The second input tensor.
|
|
|
n_channels: The number of channels.
|
|
|
"""
|
|
|
n_channels_int = n_channels[0]
|
|
|
in_act = input_a + input_b
|
|
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
|
acts = t_act * s_act
|
|
|
return acts
|
|
|
|
|
|
|
|
|
def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None):
|
|
|
"""
|
|
|
Generate a sequence mask.
|
|
|
|
|
|
Args:
|
|
|
length: The lengths of the sequences.
|
|
|
max_length: The maximum length of the sequences.
|
|
|
"""
|
|
|
if max_length is None:
|
|
|
max_length = length.max()
|
|
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
|
|
return x.unsqueeze(0) < length.unsqueeze(1)
|
|
|
|
|
|
|
|
|
def grad_norm(parameters, norm_type: float = 2.0):
|
|
|
"""
|
|
|
Calculates norm of parameter gradients
|
|
|
|
|
|
Args:
|
|
|
parameters: The list of parameters to clip.
|
|
|
norm_type: The type of norm to use for clipping.
|
|
|
"""
|
|
|
if isinstance(parameters, torch.Tensor):
|
|
|
parameters = [parameters]
|
|
|
|
|
|
parameters = [p for p in parameters if p.grad is not None]
|
|
|
|
|
|
if not parameters:
|
|
|
return 0.0
|
|
|
|
|
|
return torch.linalg.vector_norm(
|
|
|
torch.stack([p.grad.norm(norm_type) for p in parameters]), ord=norm_type
|
|
|
).item()
|
|
|
|