|
|
import math
|
|
|
import torch
|
|
|
from rvc.lib.algorithm.commons import convert_pad_shape
|
|
|
|
|
|
|
|
|
class MultiHeadAttention(torch.nn.Module):
|
|
|
"""
|
|
|
Multi-head attention module with optional relative positional encoding and proximal bias.
|
|
|
|
|
|
Args:
|
|
|
channels (int): Number of input channels.
|
|
|
out_channels (int): Number of output channels.
|
|
|
n_heads (int): Number of attention heads.
|
|
|
p_dropout (float, optional): Dropout probability. Defaults to 0.0.
|
|
|
window_size (int, optional): Window size for relative positional encoding. Defaults to None.
|
|
|
heads_share (bool, optional): Whether to share relative positional embeddings across heads. Defaults to True.
|
|
|
block_length (int, optional): Block length for local attention. Defaults to None.
|
|
|
proximal_bias (bool, optional): Whether to use proximal bias in self-attention. Defaults to False.
|
|
|
proximal_init (bool, optional): Whether to initialize the key projection weights the same as query projection weights. Defaults to False.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
channels: int,
|
|
|
out_channels: int,
|
|
|
n_heads: int,
|
|
|
p_dropout: float = 0.0,
|
|
|
window_size: int = None,
|
|
|
heads_share: bool = True,
|
|
|
block_length: int = None,
|
|
|
proximal_bias: bool = False,
|
|
|
proximal_init: bool = False,
|
|
|
):
|
|
|
super().__init__()
|
|
|
assert (
|
|
|
channels % n_heads == 0
|
|
|
), "Channels must be divisible by the number of heads."
|
|
|
|
|
|
self.channels = channels
|
|
|
self.out_channels = out_channels
|
|
|
self.n_heads = n_heads
|
|
|
self.k_channels = channels // n_heads
|
|
|
self.window_size = window_size
|
|
|
self.block_length = block_length
|
|
|
self.proximal_bias = proximal_bias
|
|
|
|
|
|
|
|
|
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
|
|
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
|
|
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
|
|
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
|
|
|
|
|
self.drop = torch.nn.Dropout(p_dropout)
|
|
|
|
|
|
|
|
|
if window_size:
|
|
|
n_heads_rel = 1 if heads_share else n_heads
|
|
|
rel_stddev = self.k_channels**-0.5
|
|
|
self.emb_rel_k = torch.nn.Parameter(
|
|
|
torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels)
|
|
|
* rel_stddev
|
|
|
)
|
|
|
self.emb_rel_v = torch.nn.Parameter(
|
|
|
torch.randn(n_heads_rel, 2 * window_size + 1, self.k_channels)
|
|
|
* rel_stddev
|
|
|
)
|
|
|
|
|
|
|
|
|
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
|
|
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
|
|
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
|
|
torch.nn.init.xavier_uniform_(self.conv_o.weight)
|
|
|
|
|
|
if proximal_init:
|
|
|
with torch.no_grad():
|
|
|
self.conv_k.weight.copy_(self.conv_q.weight)
|
|
|
self.conv_k.bias.copy_(self.conv_q.bias)
|
|
|
|
|
|
def forward(self, x, c, attn_mask=None):
|
|
|
|
|
|
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)
|
|
|
|
|
|
|
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
|
|
|
|
|
|
|
|
return self.conv_o(x)
|
|
|
|
|
|
def attention(self, query, key, value, mask=None):
|
|
|
|
|
|
b, d, t_s, t_t = (*key.size(), query.size(2))
|
|
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
|
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
|
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
|
|
|
|
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
|
|
|
|
|
if self.window_size:
|
|
|
assert t_s == t_t, "Relative attention only supports self-attention."
|
|
|
scores += self._compute_relative_scores(query, t_s)
|
|
|
|
|
|
if self.proximal_bias:
|
|
|
assert t_s == t_t, "Proximal bias only supports self-attention."
|
|
|
scores += self._attention_bias_proximal(t_s).to(scores.device, scores.dtype)
|
|
|
|
|
|
if mask is not None:
|
|
|
scores = scores.masked_fill(mask == 0, -1e4)
|
|
|
if self.block_length:
|
|
|
block_mask = (
|
|
|
torch.ones_like(scores)
|
|
|
.triu(-self.block_length)
|
|
|
.tril(self.block_length)
|
|
|
)
|
|
|
scores = scores.masked_fill(block_mask == 0, -1e4)
|
|
|
|
|
|
|
|
|
p_attn = self.drop(torch.nn.functional.softmax(scores, dim=-1))
|
|
|
|
|
|
|
|
|
output = torch.matmul(p_attn, value)
|
|
|
|
|
|
if self.window_size:
|
|
|
output += self._apply_relative_values(p_attn, t_s)
|
|
|
|
|
|
return output.transpose(2, 3).contiguous().view(b, d, t_t), p_attn
|
|
|
|
|
|
def _compute_relative_scores(self, query, length):
|
|
|
rel_emb = self._get_relative_embeddings(self.emb_rel_k, length)
|
|
|
rel_logits = self._matmul_with_relative_keys(
|
|
|
query / math.sqrt(self.k_channels), rel_emb
|
|
|
)
|
|
|
return self._relative_position_to_absolute_position(rel_logits)
|
|
|
|
|
|
def _apply_relative_values(self, p_attn, length):
|
|
|
rel_weights = self._absolute_position_to_relative_position(p_attn)
|
|
|
rel_emb = self._get_relative_embeddings(self.emb_rel_v, length)
|
|
|
return self._matmul_with_relative_values(rel_weights, rel_emb)
|
|
|
|
|
|
|
|
|
def _matmul_with_relative_values(self, x, y):
|
|
|
return torch.matmul(x, y.unsqueeze(0))
|
|
|
|
|
|
def _matmul_with_relative_keys(self, x, y):
|
|
|
return torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
|
|
|
|
|
def _get_relative_embeddings(self, embeddings, length):
|
|
|
pad_length = max(length - (self.window_size + 1), 0)
|
|
|
start = max((self.window_size + 1) - length, 0)
|
|
|
end = start + 2 * length - 1
|
|
|
|
|
|
if pad_length > 0:
|
|
|
embeddings = torch.nn.functional.pad(
|
|
|
embeddings,
|
|
|
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
|
|
)
|
|
|
return embeddings[:, start:end]
|
|
|
|
|
|
def _relative_position_to_absolute_position(self, x):
|
|
|
batch, heads, length, _ = x.size()
|
|
|
x = torch.nn.functional.pad(
|
|
|
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
|
|
|
)
|
|
|
x_flat = x.view(batch, heads, length * 2 * length)
|
|
|
x_flat = torch.nn.functional.pad(
|
|
|
x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
|
|
)
|
|
|
return x_flat.view(batch, heads, length + 1, 2 * length - 1)[
|
|
|
:, :, :length, length - 1 :
|
|
|
]
|
|
|
|
|
|
def _absolute_position_to_relative_position(self, x):
|
|
|
batch, heads, length, _ = x.size()
|
|
|
x = torch.nn.functional.pad(
|
|
|
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
|
|
)
|
|
|
x_flat = x.view(batch, heads, length**2 + length * (length - 1))
|
|
|
x_flat = torch.nn.functional.pad(
|
|
|
x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])
|
|
|
)
|
|
|
return x_flat.view(batch, heads, length, 2 * length)[:, :, :, 1:]
|
|
|
|
|
|
def _attention_bias_proximal(self, length):
|
|
|
r = torch.arange(length, dtype=torch.float32)
|
|
|
diff = r.unsqueeze(0) - r.unsqueeze(1)
|
|
|
return -torch.log1p(torch.abs(diff)).unsqueeze(0).unsqueeze(0)
|
|
|
|
|
|
|
|
|
class FFN(torch.nn.Module):
|
|
|
"""
|
|
|
Feed-forward network module.
|
|
|
|
|
|
Args:
|
|
|
in_channels (int): Number of input channels.
|
|
|
out_channels (int): Number of output channels.
|
|
|
filter_channels (int): Number of filter channels in the convolution layers.
|
|
|
kernel_size (int): Kernel size of the convolution layers.
|
|
|
p_dropout (float, optional): Dropout probability. Defaults to 0.0.
|
|
|
activation (str, optional): Activation function to use. Defaults to None.
|
|
|
causal (bool, optional): Whether to use causal padding in the convolution layers. Defaults to False.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
in_channels: int,
|
|
|
out_channels: int,
|
|
|
filter_channels: int,
|
|
|
kernel_size: int,
|
|
|
p_dropout: float = 0.0,
|
|
|
activation: str = None,
|
|
|
causal: bool = False,
|
|
|
):
|
|
|
super().__init__()
|
|
|
self.padding_fn = self._causal_padding if causal else self._same_padding
|
|
|
|
|
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size)
|
|
|
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size)
|
|
|
self.drop = torch.nn.Dropout(p_dropout)
|
|
|
|
|
|
self.activation = activation
|
|
|
|
|
|
def forward(self, x, x_mask):
|
|
|
x = self.conv_1(self.padding_fn(x * x_mask))
|
|
|
x = self._apply_activation(x)
|
|
|
x = self.drop(x)
|
|
|
x = self.conv_2(self.padding_fn(x * x_mask))
|
|
|
return x * x_mask
|
|
|
|
|
|
def _apply_activation(self, x):
|
|
|
if self.activation == "gelu":
|
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
return torch.relu(x)
|
|
|
|
|
|
def _causal_padding(self, x):
|
|
|
pad_l, pad_r = self.conv_1.kernel_size[0] - 1, 0
|
|
|
return torch.nn.functional.pad(
|
|
|
x, convert_pad_shape([[0, 0], [0, 0], [pad_l, pad_r]])
|
|
|
)
|
|
|
|
|
|
def _same_padding(self, x):
|
|
|
pad = (self.conv_1.kernel_size[0] - 1) // 2
|
|
|
return torch.nn.functional.pad(
|
|
|
x, convert_pad_shape([[0, 0], [0, 0], [pad, pad]])
|
|
|
)
|
|
|
|