|
|
import torch
|
|
|
from rvc.lib.algorithm.commons import fused_add_tanh_sigmoid_multiply
|
|
|
|
|
|
|
|
|
class WaveNet(torch.nn.Module):
|
|
|
"""
|
|
|
WaveNet residual blocks as used in WaveGlow.
|
|
|
|
|
|
Args:
|
|
|
hidden_channels (int): Number of hidden channels.
|
|
|
kernel_size (int): Size of the convolutional kernel.
|
|
|
dilation_rate (int): Dilation rate of the convolution.
|
|
|
n_layers (int): Number of convolutional layers.
|
|
|
gin_channels (int, optional): Number of conditioning channels. Defaults to 0.
|
|
|
p_dropout (float, optional): Dropout probability. Defaults to 0.
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
hidden_channels: int,
|
|
|
kernel_size: int,
|
|
|
dilation_rate,
|
|
|
n_layers: int,
|
|
|
gin_channels: int = 0,
|
|
|
p_dropout: int = 0,
|
|
|
):
|
|
|
super().__init__()
|
|
|
assert kernel_size % 2 == 1, "Kernel size must be odd for proper padding."
|
|
|
|
|
|
self.hidden_channels = hidden_channels
|
|
|
self.kernel_size = (kernel_size,)
|
|
|
self.dilation_rate = dilation_rate
|
|
|
self.n_layers = n_layers
|
|
|
self.gin_channels = gin_channels
|
|
|
self.p_dropout = p_dropout
|
|
|
self.n_channels_tensor = torch.IntTensor([hidden_channels])
|
|
|
|
|
|
self.in_layers = torch.nn.ModuleList()
|
|
|
self.res_skip_layers = torch.nn.ModuleList()
|
|
|
self.drop = torch.nn.Dropout(p_dropout)
|
|
|
|
|
|
|
|
|
if gin_channels:
|
|
|
self.cond_layer = torch.nn.utils.parametrizations.weight_norm(
|
|
|
torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1),
|
|
|
name="weight",
|
|
|
)
|
|
|
|
|
|
|
|
|
dilations = [dilation_rate**i for i in range(n_layers)]
|
|
|
paddings = [(kernel_size * d - d) // 2 for d in dilations]
|
|
|
|
|
|
|
|
|
for i in range(n_layers):
|
|
|
self.in_layers.append(
|
|
|
torch.nn.utils.parametrizations.weight_norm(
|
|
|
torch.nn.Conv1d(
|
|
|
hidden_channels,
|
|
|
2 * hidden_channels,
|
|
|
kernel_size,
|
|
|
dilation=dilations[i],
|
|
|
padding=paddings[i],
|
|
|
),
|
|
|
name="weight",
|
|
|
)
|
|
|
)
|
|
|
|
|
|
res_skip_channels = (
|
|
|
hidden_channels if i == n_layers - 1 else 2 * hidden_channels
|
|
|
)
|
|
|
self.res_skip_layers.append(
|
|
|
torch.nn.utils.parametrizations.weight_norm(
|
|
|
torch.nn.Conv1d(hidden_channels, res_skip_channels, 1),
|
|
|
name="weight",
|
|
|
)
|
|
|
)
|
|
|
|
|
|
def forward(self, x, x_mask, g=None):
|
|
|
output = x.clone().zero_()
|
|
|
|
|
|
|
|
|
g = self.cond_layer(g) if g is not None else None
|
|
|
|
|
|
for i in range(self.n_layers):
|
|
|
x_in = self.in_layers[i](x)
|
|
|
g_l = (
|
|
|
g[
|
|
|
:,
|
|
|
i * 2 * self.hidden_channels : (i + 1) * 2 * self.hidden_channels,
|
|
|
:,
|
|
|
]
|
|
|
if g is not None
|
|
|
else 0
|
|
|
)
|
|
|
|
|
|
|
|
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, self.n_channels_tensor)
|
|
|
acts = self.drop(acts)
|
|
|
|
|
|
|
|
|
res_skip_acts = self.res_skip_layers[i](acts)
|
|
|
if i < self.n_layers - 1:
|
|
|
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
|
|
x = (x + res_acts) * x_mask
|
|
|
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
|
|
else:
|
|
|
output = output + res_skip_acts
|
|
|
|
|
|
return output * x_mask
|
|
|
|
|
|
def remove_weight_norm(self):
|
|
|
if self.gin_channels:
|
|
|
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
|
|
for layer in self.in_layers:
|
|
|
torch.nn.utils.remove_weight_norm(layer)
|
|
|
for layer in self.res_skip_layers:
|
|
|
torch.nn.utils.remove_weight_norm(layer)
|
|
|
|