Applio / rvc /lib /FCPEF0Predictor.py
Aitron Emper
Upload 175 files
55adc26 verified
raw
history blame
No virus
34.5 kB
from typing import Union
import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils.parametrizations import weight_norm
from torchaudio.transforms import Resample
import os
import librosa
import soundfile as sf
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
import math
from functools import partial
from einops import rearrange, repeat
from local_attention import LocalAttention
from torch import nn
os.environ["LRU_CACHE_CAPACITY"] = "3"
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
sampling_rate = None
try:
data, sampling_rate = sf.read(full_path, always_2d=True) # than soundfile.
except Exception as error:
print(f"'{full_path}' failed to load with {error}")
if return_empty_on_exception:
return [], sampling_rate or target_sr or 48000
else:
raise Exception(error)
if len(data.shape) > 1:
data = data[:, 0]
assert (
len(data) > 2
) # check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
max_mag = -np.iinfo(
data.dtype
).min # maximum magnitude = min possible value of intXX
else: # if audio data is type fp32
max_mag = max(np.amax(data), -np.amin(data))
max_mag = (
(2**31) + 1
if max_mag > (2**15)
else ((2**15) + 1 if max_mag > 1.01 else 1.0)
) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
data = torch.FloatTensor(data.astype(np.float32)) / max_mag
if (
torch.isinf(data) | torch.isnan(data)
).any() and return_empty_on_exception: # resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
return [], sampling_rate or target_sr or 48000
if target_sr is not None and sampling_rate != target_sr:
data = torch.from_numpy(
librosa.core.resample(
data.numpy(), orig_sr=sampling_rate, target_sr=target_sr
)
)
sampling_rate = target_sr
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
class STFT:
def __init__(
self,
sr=22050,
n_mels=80,
n_fft=1024,
win_size=1024,
hop_length=256,
fmin=20,
fmax=11025,
clip_val=1e-5,
):
self.target_sr = sr
self.n_mels = n_mels
self.n_fft = n_fft
self.win_size = win_size
self.hop_length = hop_length
self.fmin = fmin
self.fmax = fmax
self.clip_val = clip_val
self.mel_basis = {}
self.hann_window = {}
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
sampling_rate = self.target_sr
n_mels = self.n_mels
n_fft = self.n_fft
win_size = self.win_size
hop_length = self.hop_length
fmin = self.fmin
fmax = self.fmax
clip_val = self.clip_val
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(n_fft * factor))
win_size_new = int(np.round(win_size * factor))
hop_length_new = int(np.round(hop_length * speed))
if not train:
mel_basis = self.mel_basis
hann_window = self.hann_window
else:
mel_basis = {}
hann_window = {}
mel_basis_key = str(fmax) + "_" + str(y.device)
if mel_basis_key not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax
)
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
keyshift_key = str(keyshift) + "_" + str(y.device)
if keyshift_key not in hann_window:
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
pad_left = (win_size_new - hop_length_new) // 2
pad_right = max(
(win_size_new - hop_length_new + 1) // 2,
win_size_new - y.size(-1) - pad_left,
)
if pad_right < y.size(-1):
mode = "reflect"
else:
mode = "constant"
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft_new,
hop_length=hop_length_new,
win_length=win_size_new,
window=hann_window[keyshift_key],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
if keyshift != 0:
size = n_fft // 2 + 1
resize = spec.size(1)
if resize < size:
spec = F.pad(spec, (0, 0, 0, size - resize))
spec = spec[:, :size, :] * win_size / win_size_new
spec = torch.matmul(mel_basis[mel_basis_key], spec)
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
return spec
def __call__(self, audiopath):
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
return spect
stft = STFT()
# import fast_transformers.causal_product.causal_product_cuda
def softmax_kernel(
data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None
):
b, h, *_ = data.shape
# (batch size, head, length, model_dim)
# normalize model dim
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
# what is ration?, projection_matrix.shape[0] --> 266
ratio = projection_matrix.shape[0] ** -0.5
projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h)
projection = projection.type_as(data)
# data_dash = w^T x
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection)
# diag_data = D**2
diag_data = data**2
diag_data = torch.sum(diag_data, dim=-1)
diag_data = (diag_data / 2.0) * (data_normalizer**2)
diag_data = diag_data.unsqueeze(dim=-1)
if is_query:
data_dash = ratio * (
torch.exp(
data_dash
- diag_data
- torch.max(data_dash, dim=-1, keepdim=True).values
)
+ eps
)
else:
data_dash = ratio * (
torch.exp(data_dash - diag_data + eps)
) # - torch.max(data_dash)) + eps)
return data_dash.type_as(data)
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
unstructured_block = torch.randn((cols, cols), device=device)
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
q, r = map(lambda t: t.to(device), (q, r))
# proposed by @Parskatt
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
if qr_uniform_q:
d = torch.diag(r, 0)
q *= d.sign()
return q.t()
def exists(val):
return val is not None
def empty(tensor):
return tensor.numel() == 0
def default(val, d):
return val if exists(val) else d
def cast_tuple(val):
return (val,) if not isinstance(val, tuple) else val
class PCmer(nn.Module):
"""The encoder that is used in the Transformer model."""
def __init__(
self,
num_layers,
num_heads,
dim_model,
dim_keys,
dim_values,
residual_dropout,
attention_dropout,
):
super().__init__()
self.num_layers = num_layers
self.num_heads = num_heads
self.dim_model = dim_model
self.dim_values = dim_values
self.dim_keys = dim_keys
self.residual_dropout = residual_dropout
self.attention_dropout = attention_dropout
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
# METHODS ########################################################################################################
def forward(self, phone, mask=None):
# apply all layers to the input
for i, layer in enumerate(self._layers):
phone = layer(phone, mask)
# provide the final sequence
return phone
# ==================================================================================================================== #
# CLASS _ E N C O D E R L A Y E R #
# ==================================================================================================================== #
class _EncoderLayer(nn.Module):
"""One layer of the encoder.
Attributes:
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
"""
def __init__(self, parent: PCmer):
"""Creates a new instance of ``_EncoderLayer``.
Args:
parent (Encoder): The encoder that the layers is created for.
"""
super().__init__()
self.conformer = ConformerConvModule(parent.dim_model)
self.norm = nn.LayerNorm(parent.dim_model)
self.dropout = nn.Dropout(parent.residual_dropout)
# selfatt -> fastatt: performer!
self.attn = SelfAttention(
dim=parent.dim_model, heads=parent.num_heads, causal=False
)
# METHODS ########################################################################################################
def forward(self, phone, mask=None):
# compute attention sub-layer
phone = phone + (self.attn(self.norm(phone), mask=mask))
phone = phone + (self.conformer(phone))
return phone
def calc_same_padding(kernel_size):
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
# helper classes
class Swish(nn.Module):
def forward(self, x):
return x * x.sigmoid()
class Transpose(nn.Module):
def __init__(self, dims):
super().__init__()
assert len(dims) == 2, "dims must be a tuple of two dimensions"
self.dims = dims
def forward(self, x):
return x.transpose(*self.dims)
class GLU(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
class DepthWiseConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size, padding):
super().__init__()
self.padding = padding
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)
def forward(self, x):
x = F.pad(x, self.padding)
return self.conv(x)
class ConformerConvModule(nn.Module):
def __init__(
self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0
):
super().__init__()
inner_dim = dim * expansion_factor
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
self.net = nn.Sequential(
nn.LayerNorm(dim),
Transpose((1, 2)),
nn.Conv1d(dim, inner_dim * 2, 1),
GLU(dim=1),
DepthWiseConv1d(
inner_dim, inner_dim, kernel_size=kernel_size, padding=padding
),
# nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
Swish(),
nn.Conv1d(inner_dim, dim, 1),
Transpose((1, 2)),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
def linear_attention(q, k, v):
if v is None:
out = torch.einsum("...ed,...nd->...ne", k, q)
return out
else:
k_cumsum = k.sum(dim=-2)
# k_cumsum = k.sum(dim = -2)
D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8)
context = torch.einsum("...nd,...ne->...de", k, v)
out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv)
return out
def gaussian_orthogonal_random_matrix(
nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None
):
nb_full_blocks = int(nb_rows / nb_columns)
block_list = []
for _ in range(nb_full_blocks):
q = orthogonal_matrix_chunk(
nb_columns, qr_uniform_q=qr_uniform_q, device=device
)
block_list.append(q)
remaining_rows = nb_rows - nb_full_blocks * nb_columns
if remaining_rows > 0:
q = orthogonal_matrix_chunk(
nb_columns, qr_uniform_q=qr_uniform_q, device=device
)
block_list.append(q[:remaining_rows])
final_matrix = torch.cat(block_list)
if scaling == 0:
multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
elif scaling == 1:
multiplier = math.sqrt((float(nb_columns))) * torch.ones(
(nb_rows,), device=device
)
else:
raise ValueError(f"Invalid scaling {scaling}")
return torch.diag(multiplier) @ final_matrix
class FastAttention(nn.Module):
def __init__(
self,
dim_heads,
nb_features=None,
ortho_scaling=0,
causal=False,
generalized_attention=False,
kernel_fn=nn.ReLU(),
qr_uniform_q=False,
no_projection=False,
):
super().__init__()
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
self.dim_heads = dim_heads
self.nb_features = nb_features
self.ortho_scaling = ortho_scaling
self.create_projection = partial(
gaussian_orthogonal_random_matrix,
nb_rows=self.nb_features,
nb_columns=dim_heads,
scaling=ortho_scaling,
qr_uniform_q=qr_uniform_q,
)
projection_matrix = self.create_projection()
self.register_buffer("projection_matrix", projection_matrix)
self.generalized_attention = generalized_attention
self.kernel_fn = kernel_fn
# if this is turned on, no projection will be used
# queries and keys will be softmax-ed as in the original efficient attention paper
self.no_projection = no_projection
self.causal = causal
@torch.no_grad()
def redraw_projection_matrix(self):
projections = self.create_projection()
self.projection_matrix.copy_(projections)
del projections
def forward(self, q, k, v):
device = q.device
if self.no_projection:
q = q.softmax(dim=-1)
k = torch.exp(k) if self.causal else k.softmax(dim=-2)
else:
create_kernel = partial(
softmax_kernel, projection_matrix=self.projection_matrix, device=device
)
q = create_kernel(q, is_query=True)
k = create_kernel(k, is_query=False)
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
if v is None:
out = attn_fn(q, k, None)
return out
else:
out = attn_fn(q, k, v)
return out
class SelfAttention(nn.Module):
def __init__(
self,
dim,
causal=False,
heads=8,
dim_head=64,
local_heads=0,
local_window_size=256,
nb_features=None,
feature_redraw_interval=1000,
generalized_attention=False,
kernel_fn=nn.ReLU(),
qr_uniform_q=False,
dropout=0.0,
no_projection=False,
):
super().__init__()
assert dim % heads == 0, "dimension must be divisible by number of heads"
dim_head = default(dim_head, dim // heads)
inner_dim = dim_head * heads
self.fast_attention = FastAttention(
dim_head,
nb_features,
causal=causal,
generalized_attention=generalized_attention,
kernel_fn=kernel_fn,
qr_uniform_q=qr_uniform_q,
no_projection=no_projection,
)
self.heads = heads
self.global_heads = heads - local_heads
self.local_attn = (
LocalAttention(
window_size=local_window_size,
causal=causal,
autopad=True,
dropout=dropout,
look_forward=int(not causal),
rel_pos_emb_config=(dim_head, local_heads),
)
if local_heads > 0
else None
)
self.to_q = nn.Linear(dim, inner_dim)
self.to_k = nn.Linear(dim, inner_dim)
self.to_v = nn.Linear(dim, inner_dim)
self.to_out = nn.Linear(inner_dim, dim)
self.dropout = nn.Dropout(dropout)
@torch.no_grad()
def redraw_projection_matrix(self):
self.fast_attention.redraw_projection_matrix()
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
name=None,
inference=False,
**kwargs,
):
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
cross_attend = exists(context)
context = default(context, x)
context_mask = default(context_mask, mask) if not cross_attend else context_mask
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
attn_outs = []
if not empty(q):
if exists(context_mask):
global_mask = context_mask[:, None, :, None]
v.masked_fill_(~global_mask, 0.0)
if cross_attend:
pass
else:
out = self.fast_attention(q, k, v)
attn_outs.append(out)
if not empty(lq):
assert (
not cross_attend
), "local attention is not compatible with cross attention"
out = self.local_attn(lq, lk, lv, input_mask=mask)
attn_outs.append(out)
out = torch.cat(attn_outs, dim=1)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out(out)
return self.dropout(out)
def l2_regularization(model, l2_alpha):
l2_loss = []
for module in model.modules():
if type(module) is nn.Conv2d:
l2_loss.append((module.weight**2).sum() / 2.0)
return l2_alpha * sum(l2_loss)
class FCPE(nn.Module):
def __init__(
self,
input_channel=128,
out_dims=360,
n_layers=12,
n_chans=512,
use_siren=False,
use_full=False,
loss_mse_scale=10,
loss_l2_regularization=False,
loss_l2_regularization_scale=1,
loss_grad1_mse=False,
loss_grad1_mse_scale=1,
f0_max=1975.5,
f0_min=32.70,
confidence=False,
threshold=0.05,
use_input_conv=True,
):
super().__init__()
if use_siren is True:
raise ValueError("Siren is not supported yet.")
if use_full is True:
raise ValueError("Full model is not supported yet.")
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
self.loss_l2_regularization = (
loss_l2_regularization if (loss_l2_regularization is not None) else False
)
self.loss_l2_regularization_scale = (
loss_l2_regularization_scale
if (loss_l2_regularization_scale is not None)
else 1
)
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
self.loss_grad1_mse_scale = (
loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
)
self.f0_max = f0_max if (f0_max is not None) else 1975.5
self.f0_min = f0_min if (f0_min is not None) else 32.70
self.confidence = confidence if (confidence is not None) else False
self.threshold = threshold if (threshold is not None) else 0.05
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
self.cent_table_b = torch.Tensor(
np.linspace(
self.f0_to_cent(torch.Tensor([f0_min]))[0],
self.f0_to_cent(torch.Tensor([f0_max]))[0],
out_dims,
)
)
self.register_buffer("cent_table", self.cent_table_b)
# conv in stack
_leaky = nn.LeakyReLU()
self.stack = nn.Sequential(
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
nn.GroupNorm(4, n_chans),
_leaky,
nn.Conv1d(n_chans, n_chans, 3, 1, 1),
)
# transformer
self.decoder = PCmer(
num_layers=n_layers,
num_heads=8,
dim_model=n_chans,
dim_keys=n_chans,
dim_values=n_chans,
residual_dropout=0.1,
attention_dropout=0.1,
)
self.norm = nn.LayerNorm(n_chans)
# out
self.n_out = out_dims
self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))
def forward(
self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"
):
"""
input:
B x n_frames x n_unit
return:
dict of B x n_frames x feat
"""
if cdecoder == "argmax":
self.cdecoder = self.cents_decoder
elif cdecoder == "local_argmax":
self.cdecoder = self.cents_local_decoder
if self.use_input_conv:
x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
else:
x = mel
x = self.decoder(x)
x = self.norm(x)
x = self.dense_out(x) # [B,N,D]
x = torch.sigmoid(x)
if not infer:
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
loss_all = self.loss_mse_scale * F.binary_cross_entropy(
x, gt_cent_f0
) # bce loss
# l2 regularization
if self.loss_l2_regularization:
loss_all = loss_all + l2_regularization(
model=self, l2_alpha=self.loss_l2_regularization_scale
)
x = loss_all
if infer:
x = self.cdecoder(x)
x = self.cent_to_f0(x)
if not return_hz_f0:
x = (1 + x / 700).log()
return x
def cents_decoder(self, y, mask=True):
B, N, _ = y.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(
y, dim=-1, keepdim=True
) # cents: [B,N,1]
if mask:
confident = torch.max(y, dim=-1, keepdim=True)[0]
confident_mask = torch.ones_like(confident)
confident_mask[confident <= self.threshold] = float("-INF")
rtn = rtn * confident_mask
if self.confidence:
return rtn, confident
else:
return rtn
def cents_local_decoder(self, y, mask=True):
B, N, _ = y.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
confident, max_index = torch.max(y, dim=-1, keepdim=True)
local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
local_argmax_index[local_argmax_index < 0] = 0
local_argmax_index[local_argmax_index >= self.n_out] = self.n_out - 1
ci_l = torch.gather(ci, -1, local_argmax_index)
y_l = torch.gather(y, -1, local_argmax_index)
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(
y_l, dim=-1, keepdim=True
) # cents: [B,N,1]
if mask:
confident_mask = torch.ones_like(confident)
confident_mask[confident <= self.threshold] = float("-INF")
rtn = rtn * confident_mask
if self.confidence:
return rtn, confident
else:
return rtn
def cent_to_f0(self, cent):
return 10.0 * 2 ** (cent / 1200.0)
def f0_to_cent(self, f0):
return 1200.0 * torch.log2(f0 / 10.0)
def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0)))
B, N, _ = cents.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
class FCPEInfer:
def __init__(self, model_path, device=None, dtype=torch.float32):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
ckpt = torch.load(model_path, map_location=torch.device(self.device))
self.args = DotDict(ckpt["config"])
self.dtype = dtype
model = FCPE(
input_channel=self.args.model.input_channel,
out_dims=self.args.model.out_dims,
n_layers=self.args.model.n_layers,
n_chans=self.args.model.n_chans,
use_siren=self.args.model.use_siren,
use_full=self.args.model.use_full,
loss_mse_scale=self.args.loss.loss_mse_scale,
loss_l2_regularization=self.args.loss.loss_l2_regularization,
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
loss_grad1_mse=self.args.loss.loss_grad1_mse,
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
f0_max=self.args.model.f0_max,
f0_min=self.args.model.f0_min,
confidence=self.args.model.confidence,
)
model.to(self.device).to(self.dtype)
model.load_state_dict(ckpt["model"])
model.eval()
self.model = model
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
@torch.no_grad()
def __call__(self, audio, sr, threshold=0.05):
self.model.threshold = threshold
audio = audio[None, :]
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
return f0
class Wav2Mel:
def __init__(self, args, device=None, dtype=torch.float32):
# self.args = args
self.sampling_rate = args.mel.sampling_rate
self.hop_size = args.mel.hop_size
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.dtype = dtype
self.stft = STFT(
args.mel.sampling_rate,
args.mel.num_mels,
args.mel.n_fft,
args.mel.win_size,
args.mel.hop_size,
args.mel.fmin,
args.mel.fmax,
)
self.resample_kernel = {}
def extract_nvstft(self, audio, keyshift=0, train=False):
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(
1, 2
) # B, n_frames, bins
return mel
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
audio = audio.to(self.dtype).to(self.device)
# resample
if sample_rate == self.sampling_rate:
audio_res = audio
else:
key_str = str(sample_rate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(
sample_rate, self.sampling_rate, lowpass_filter_width=128
)
self.resample_kernel[key_str] = (
self.resample_kernel[key_str].to(self.dtype).to(self.device)
)
audio_res = self.resample_kernel[key_str](audio)
# extract
mel = self.extract_nvstft(
audio_res, keyshift=keyshift, train=train
) # B, n_frames, bins
n_frames = int(audio.shape[1] // self.hop_size) + 1
if n_frames > int(mel.shape[1]):
mel = torch.cat((mel, mel[:, -1:, :]), 1)
if n_frames < int(mel.shape[1]):
mel = mel[:, :n_frames, :]
return mel
def __call__(self, audio, sample_rate, keyshift=0, train=False):
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class F0Predictor(object):
def compute_f0(self, wav, p_len):
"""
input: wav:[signal_length]
p_len:int
output: f0:[signal_length//hop_length]
"""
pass
def compute_f0_uv(self, wav, p_len):
"""
input: wav:[signal_length]
p_len:int
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
"""
pass
class FCPEF0Predictor(F0Predictor):
def __init__(
self,
model_path,
hop_length=512,
f0_min=50,
f0_max=1100,
dtype=torch.float32,
device=None,
sampling_rate=44100,
threshold=0.05,
):
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
self.hop_length = hop_length
self.f0_min = f0_min
self.f0_max = f0_max
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.threshold = threshold
self.sampling_rate = sampling_rate
self.dtype = dtype
self.name = "fcpe"
def repeat_expand(
self,
content: Union[torch.Tensor, np.ndarray],
target_len: int,
mode: str = "nearest",
):
ndim = content.ndim
if content.ndim == 1:
content = content[None, None]
elif content.ndim == 2:
content = content[None]
assert content.ndim == 3
is_np = isinstance(content, np.ndarray)
if is_np:
content = torch.from_numpy(content)
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
if is_np:
results = results.numpy()
if ndim == 1:
return results[0, 0]
elif ndim == 2:
return results[0]
def post_process(self, x, sampling_rate, f0, pad_to):
if isinstance(f0, np.ndarray):
f0 = torch.from_numpy(f0).float().to(x.device)
if pad_to is None:
return f0
f0 = self.repeat_expand(f0, pad_to)
vuv_vector = torch.zeros_like(f0)
vuv_vector[f0 > 0.0] = 1.0
vuv_vector[f0 <= 0.0] = 0.0
# 去掉0频率, 并线性插值
nzindex = torch.nonzero(f0).squeeze()
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
if f0.shape[0] <= 0:
return (
torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),
vuv_vector.cpu().numpy(),
)
if f0.shape[0] == 1:
return (
torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]
).cpu().numpy(), vuv_vector.cpu().numpy()
# 大概可以用 torch 重写?
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
return f0, vuv_vector.cpu().numpy()
def compute_f0(self, wav, p_len=None):
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
if p_len is None:
print("fcpe p_len is None")
p_len = x.shape[0] // self.hop_length
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
if torch.all(f0 == 0):
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
return rtn, rtn
return self.post_process(x, self.sampling_rate, f0, p_len)[0]
def compute_f0_uv(self, wav, p_len=None):
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
if p_len is None:
p_len = x.shape[0] // self.hop_length
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
if torch.all(f0 == 0):
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
return rtn, rtn
return self.post_process(x, self.sampling_rate, f0, p_len)