Hzjsjs commited on
Commit
4205ce4
·
1 Parent(s): 4416e92

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -3
app.py CHANGED
@@ -1,6 +1,11 @@
1
  import gradio as gr
2
  from fastai.vision.all import *
3
  import skimage
 
 
 
 
 
4
 
5
  learn = load_learner('export.pkl')
6
 
@@ -12,9 +17,18 @@ def predict(img):
12
 
13
  title = "Skin Lesion Classifier [RESNET 50]"
14
  description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
- article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
- examples = ['siamese.jpg']
17
  interpretation='default'
18
  enable_queue=True
19
 
20
- gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from fastai.vision.all import *
3
  import skimage
4
+ #Importing necessary libraries
5
+ import gradio as gr
6
+ #import scikit-learn as sklearn
7
+ from fastai.vision.all import *
8
+ from sklearn.metrics import roc_auc_score
9
 
10
  learn = load_learner('export.pkl')
11
 
 
17
 
18
  title = "Skin Lesion Classifier [RESNET 50]"
19
  description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
20
+
 
21
  interpretation='default'
22
  enable_queue=True
23
 
24
+ examples = ['img1.jpg','img2.jpg','img3.jpg']
25
+
26
+ #Launching the gradio application
27
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),
28
+ outputs=gr.outputs.Label(num_top_classes=1),
29
+ title=title,
30
+ description=description,article=article,
31
+ examples=examples,
32
+ enable_queue=enable_queue).launch(inline=False)
33
+
34
+ #gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()