Hzjsjs commited on
Commit
246356d
1 Parent(s): 1a6473b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -9,13 +9,19 @@ def predict(img):
9
  img = PILImage.create(img)
10
  pred,pred_idx,probs = learn.predict(img)
11
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
 
 
 
 
 
12
 
13
  gr.Interface(
14
  fn=predict
15
  ,inputs=gr.inputs.Image(shape=(512, 512))
16
  ,outputs=gr.outputs.Label(num_top_classes=3)
17
  ,examples=['img1.jpg','img2.jpg','img3.jpg']
18
- ).launch(share=False)
19
 
20
 
21
 
@@ -49,12 +55,6 @@ gr.Interface(
49
  # pred,pred_idx,probs = learn.predict(img)
50
  # return {labels[i]: float(probs[i]) for i in range(len(labels))}
51
 
52
- # title = "Skin Lesion Classifier [RESNET 50]"
53
- # description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
54
- # article="<p style='text-align: center'><a href='https://challenge.isic-archive.com/data/' target='_blank'>Link to ISIC Dataset</a></p>"
55
-
56
- # interpretation='default'
57
- # enable_queue=True
58
 
59
  # examples = ['img1.jpg','img2.jpg','img3.jpg']
60
 
 
9
  img = PILImage.create(img)
10
  pred,pred_idx,probs = learn.predict(img)
11
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
+ title = "Skin Lesion Classifier [RESNET 50]"
13
+ description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
14
+ article="<p style='text-align: center'><a href='https://challenge.isic-archive.com/data/' target='_blank'>Link to ISIC Dataset</a></p>"
15
+ interpretation='default'
16
+ enable_queue=True
17
+
18
 
19
  gr.Interface(
20
  fn=predict
21
  ,inputs=gr.inputs.Image(shape=(512, 512))
22
  ,outputs=gr.outputs.Label(num_top_classes=3)
23
  ,examples=['img1.jpg','img2.jpg','img3.jpg']
24
+ ,title=title,description=description,article=article,examples=['img1.jpg','img2.jpg','img3.jpg'],interpretation=interpretation,enable_queue=enable_queue).launch()
25
 
26
 
27
 
 
55
  # pred,pred_idx,probs = learn.predict(img)
56
  # return {labels[i]: float(probs[i]) for i in range(len(labels))}
57
 
 
 
 
 
 
 
58
 
59
  # examples = ['img1.jpg','img2.jpg','img3.jpg']
60