Spaces:
Runtime error
Runtime error
from fastai.learner import * | |
from fastai.vision.all import * | |
import gradio as gr | |
learn = load_learner("export.pkl") | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "Skin Lesion Classifier [RESNET 50]" | |
description = "A skin lesion classifier trained on the ISIC2019 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." | |
article="<p style='text-align: center'><a href='https://challenge.isic-archive.com/data/' target='_blank'>Link to ISIC Dataset</a></p>" | |
interpretation='default' | |
enable_queue=True | |
examples = examples=['img1.jpg','img2.jpg','img3.jpg'] | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() | |
# import gradio as gr | |
# from fastai.vision.all import * | |
# import skimage | |
# #Importing necessary libraries | |
# import gradio as gr | |
# #import scikit-learn as sklearn | |
# from fastai.vision.all import * | |
# from sklearn.metrics import roc_auc_score | |
# learn = load_learner('export.pkl') | |
# labels = learn.dls.vocab | |
# def predict(img): | |
# img = PILImage.create(img) | |
# pred,pred_idx,probs = learn.predict(img) | |
# return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# examples = ['img1.jpg','img2.jpg','img3.jpg'] | |
# #Launching the gradio application | |
# gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)), | |
# outputs=gr.outputs.Label(num_top_classes=1), | |
# title=title, | |
# description=description,article=article, | |
# examples=examples, | |
# enable_queue=enable_queue).launch(inline=False) | |
# #gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() |