Spaces:
Sleeping
Sleeping
Update use_case_generation.py
Browse files- use_case_generation.py +21 -7
use_case_generation.py
CHANGED
@@ -1,22 +1,36 @@
|
|
1 |
-
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
5 |
|
6 |
def generate_use_cases(company_info):
|
7 |
use_cases = []
|
8 |
references = ["McKinsey AI Report", "Deloitte Industry Insights"]
|
9 |
-
|
|
|
10 |
if "customer experience" in company_info["focus_areas"]:
|
11 |
-
suggestion =
|
12 |
use_cases.append(suggestion)
|
13 |
|
14 |
if "operations" in company_info["focus_areas"]:
|
15 |
-
suggestion =
|
16 |
use_cases.append(suggestion)
|
17 |
|
18 |
if "supply chain" in company_info["focus_areas"]:
|
19 |
-
suggestion =
|
20 |
use_cases.append(suggestion)
|
21 |
|
22 |
return {"use_cases": use_cases, "references": references}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import os
|
3 |
|
4 |
+
# Set up your OpenAI API key
|
5 |
+
openai.api_key = os.getenv("22ec84421ec24230a3638d1b51e3a7dc")
|
6 |
|
7 |
def generate_use_cases(company_info):
|
8 |
use_cases = []
|
9 |
references = ["McKinsey AI Report", "Deloitte Industry Insights"]
|
10 |
+
|
11 |
+
# Generate suggestions based on company focus areas
|
12 |
if "customer experience" in company_info["focus_areas"]:
|
13 |
+
suggestion = get_openai_response("Suggest a GenAI-driven chatbot for enhanced customer support.")
|
14 |
use_cases.append(suggestion)
|
15 |
|
16 |
if "operations" in company_info["focus_areas"]:
|
17 |
+
suggestion = get_openai_response("Propose using predictive maintenance models to streamline operations.")
|
18 |
use_cases.append(suggestion)
|
19 |
|
20 |
if "supply chain" in company_info["focus_areas"]:
|
21 |
+
suggestion = get_openai_response("Describe how real-time analytics could improve supply chain transparency.")
|
22 |
use_cases.append(suggestion)
|
23 |
|
24 |
return {"use_cases": use_cases, "references": references}
|
25 |
+
|
26 |
+
def get_openai_response(prompt, model="gpt-4"):
|
27 |
+
try:
|
28 |
+
response = openai.ChatCompletion.create(
|
29 |
+
model=model,
|
30 |
+
messages=[{"role": "user", "content": prompt}]
|
31 |
+
)
|
32 |
+
return response['choices'][0]['message']['content']
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error generating response from OpenAI: {e}")
|
35 |
+
return "Could not generate use case."
|
36 |
+
|