|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
model_name = "avichr/heBERT" |
|
|
|
question_answer = pipeline("question-answering", model=model_name, tokenizer=model_name) |
|
|
|
def read_file_content(file_obj): |
|
""" |
|
Reads the content of a file object and returns it. |
|
Parameters: |
|
file_obj (file object): The file object to read from. |
|
Returns: |
|
str: The content of the file. |
|
""" |
|
try: |
|
with open(file_obj.name, 'r', encoding='utf-8') as file: |
|
context = file.read() |
|
return context |
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
def get_answer(file, question): |
|
context = read_file_content(file) |
|
answer = question_answer(question=question, context=context) |
|
return answer["answer"] |
|
|
|
demo = gr.Interface( |
|
fn=get_answer, |
|
inputs=[gr.File(label="Upload your file"), gr.Textbox(label="Input your question", lines=1)], |
|
outputs=[gr.Textbox(label="Answer text", lines=1)], |
|
title="Document Q & A - Hebrew", |
|
description="This application will be used to answer questions based on the context provided." |
|
) |
|
|
|
demo.launch() |
|
|