Spaces:
Runtime error
Runtime error
Create textimage.py
Browse files- pages/textimage.py +69 -0
pages/textimage.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from typing import Tuple
|
8 |
+
from datetime import datetime
|
9 |
+
from diffusers import PixArtAlphaPipeline, LCMScheduler
|
10 |
+
|
11 |
+
# Check if CUDA is available
|
12 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Define Hugging Face API details
|
15 |
+
API_URL = "https://api-inference.huggingface.co/models/Huzaifa367/chat-summarizer"
|
16 |
+
API_TOKEN = os.getenv("AUTH_TOKEN")
|
17 |
+
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
18 |
+
|
19 |
+
# Initialize PixArtAlphaPipeline
|
20 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
21 |
+
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
use_safetensors=True,
|
24 |
+
device=device
|
25 |
+
)
|
26 |
+
|
27 |
+
# Function to generate image based on prompt
|
28 |
+
def generate_image(prompt: str) -> Tuple[str, int]:
|
29 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
30 |
+
images = pipe(
|
31 |
+
prompt=prompt,
|
32 |
+
width=1024,
|
33 |
+
height=1024,
|
34 |
+
num_inference_steps=4,
|
35 |
+
generator=torch.Generator().manual_seed(seed),
|
36 |
+
num_images_per_prompt=1,
|
37 |
+
use_resolution_binning=True,
|
38 |
+
output_type="pil",
|
39 |
+
).images
|
40 |
+
|
41 |
+
# Save image and return path and seed
|
42 |
+
image_path = save_image(images[0])
|
43 |
+
return image_path, seed
|
44 |
+
|
45 |
+
# Function to save image and return path
|
46 |
+
def save_image(img):
|
47 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
48 |
+
img.save(unique_name)
|
49 |
+
return unique_name
|
50 |
+
|
51 |
+
# Streamlit app
|
52 |
+
def main():
|
53 |
+
st.set_page_config(layout="wide")
|
54 |
+
st.title("Instant Image Generator")
|
55 |
+
|
56 |
+
# Prompt input
|
57 |
+
prompt = st.text_area("Prompt", "Enter your prompt here...")
|
58 |
+
|
59 |
+
# Generate button
|
60 |
+
if st.button("Generate Image"):
|
61 |
+
if prompt:
|
62 |
+
# Generate image based on prompt
|
63 |
+
image_path, seed = generate_image(prompt)
|
64 |
+
|
65 |
+
# Display the generated image
|
66 |
+
st.image(image_path, use_column_width=True, caption=f"Seed: {seed}")
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
main()
|