Spaces:
Runtime error
Runtime error
Update pages/summarizer.py
Browse files- pages/summarizer.py +112 -112
pages/summarizer.py
CHANGED
@@ -1,112 +1,112 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PyPDF2 import PdfReader
|
3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
from langchain_groq import ChatGroq
|
5 |
-
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chains.question_answering import load_qa_chain
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
import tempfile
|
10 |
-
from gtts import gTTS
|
11 |
-
import os
|
12 |
-
|
13 |
-
def text_to_speech(text):
|
14 |
-
tts = gTTS(text=text, lang='en')
|
15 |
-
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
|
16 |
-
temp_filename = audio_file.name
|
17 |
-
tts.save(temp_filename)
|
18 |
-
st.audio(temp_filename, format='audio/mp3')
|
19 |
-
os.remove(temp_filename)
|
20 |
-
|
21 |
-
def get_pdf_text(pdf_docs):
|
22 |
-
text=""
|
23 |
-
for pdf in pdf_docs:
|
24 |
-
pdf_reader= PdfReader(pdf)
|
25 |
-
for page in pdf_reader.pages:
|
26 |
-
text+= page.extract_text()
|
27 |
-
return text
|
28 |
-
|
29 |
-
def get_text_chunks(text):
|
30 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
31 |
-
chunks = text_splitter.split_text(text)
|
32 |
-
return chunks
|
33 |
-
|
34 |
-
def get_vector_store(text_chunks, api_key):
|
35 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
36 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
37 |
-
vector_store.save_local("faiss_index")
|
38 |
-
|
39 |
-
def get_conversational_chain():
|
40 |
-
|
41 |
-
prompt_template = """
|
42 |
-
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
43 |
-
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
44 |
-
Context:\n {context}?\n
|
45 |
-
Question: \n{question}\n
|
46 |
-
Answer:
|
47 |
-
"""
|
48 |
-
|
49 |
-
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
|
50 |
-
|
51 |
-
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
52 |
-
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
53 |
-
|
54 |
-
return chain
|
55 |
-
|
56 |
-
def user_input(user_question, api_key):
|
57 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
58 |
-
|
59 |
-
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
60 |
-
docs = new_db.similarity_search(user_question)
|
61 |
-
|
62 |
-
chain = get_conversational_chain()
|
63 |
-
|
64 |
-
response = chain(
|
65 |
-
{"input_documents":docs, "question": user_question}
|
66 |
-
, return_only_outputs=True)
|
67 |
-
|
68 |
-
print(response) # Debugging line
|
69 |
-
|
70 |
-
st.write("Replies:")
|
71 |
-
if isinstance(response["output_text"], str):
|
72 |
-
response_list = [response["output_text"]]
|
73 |
-
else:
|
74 |
-
response_list = response["output_text"]
|
75 |
-
|
76 |
-
for text in response_list:
|
77 |
-
st.write(text)
|
78 |
-
# Convert text to speech for each response
|
79 |
-
text_to_speech(text)
|
80 |
-
|
81 |
-
def main():
|
82 |
-
|
83 |
-
st.set_page_config(layout="centered")
|
84 |
-
st.header("Chat with DOCS")
|
85 |
-
st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
|
86 |
-
api_key = st.secrets["inference_api_key"]
|
87 |
-
|
88 |
-
|
89 |
-
with st.sidebar:
|
90 |
-
st.header("Chat with PDF")
|
91 |
-
# st.title("Menu:")
|
92 |
-
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit Button", accept_multiple_files=True, type=["pdf"])
|
93 |
-
if st.button("Submit"):
|
94 |
-
with st.spinner("Processing..."):
|
95 |
-
raw_text = get_pdf_text(pdf_docs)
|
96 |
-
text_chunks = get_text_chunks(raw_text)
|
97 |
-
get_vector_store(text_chunks, api_key)
|
98 |
-
st.success("Done")
|
99 |
-
|
100 |
-
if st.button("Summerize Chat"):
|
101 |
-
st.switch_page('
|
102 |
-
|
103 |
-
# Check if any document is uploaded
|
104 |
-
if pdf_docs:
|
105 |
-
user_question = st.text_input("Ask a question from the Docs")
|
106 |
-
if user_question:
|
107 |
-
user_input(user_question, api_key)
|
108 |
-
else:
|
109 |
-
st.write("Please upload a document first to ask questions.")
|
110 |
-
|
111 |
-
if __name__ == "__main__":
|
112 |
-
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains.question_answering import load_qa_chain
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
import tempfile
|
10 |
+
from gtts import gTTS
|
11 |
+
import os
|
12 |
+
|
13 |
+
def text_to_speech(text):
|
14 |
+
tts = gTTS(text=text, lang='en')
|
15 |
+
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
|
16 |
+
temp_filename = audio_file.name
|
17 |
+
tts.save(temp_filename)
|
18 |
+
st.audio(temp_filename, format='audio/mp3')
|
19 |
+
os.remove(temp_filename)
|
20 |
+
|
21 |
+
def get_pdf_text(pdf_docs):
|
22 |
+
text=""
|
23 |
+
for pdf in pdf_docs:
|
24 |
+
pdf_reader= PdfReader(pdf)
|
25 |
+
for page in pdf_reader.pages:
|
26 |
+
text+= page.extract_text()
|
27 |
+
return text
|
28 |
+
|
29 |
+
def get_text_chunks(text):
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
31 |
+
chunks = text_splitter.split_text(text)
|
32 |
+
return chunks
|
33 |
+
|
34 |
+
def get_vector_store(text_chunks, api_key):
|
35 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
36 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
37 |
+
vector_store.save_local("faiss_index")
|
38 |
+
|
39 |
+
def get_conversational_chain():
|
40 |
+
|
41 |
+
prompt_template = """
|
42 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
43 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
44 |
+
Context:\n {context}?\n
|
45 |
+
Question: \n{question}\n
|
46 |
+
Answer:
|
47 |
+
"""
|
48 |
+
|
49 |
+
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
|
50 |
+
|
51 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
52 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
53 |
+
|
54 |
+
return chain
|
55 |
+
|
56 |
+
def user_input(user_question, api_key):
|
57 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
58 |
+
|
59 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
60 |
+
docs = new_db.similarity_search(user_question)
|
61 |
+
|
62 |
+
chain = get_conversational_chain()
|
63 |
+
|
64 |
+
response = chain(
|
65 |
+
{"input_documents":docs, "question": user_question}
|
66 |
+
, return_only_outputs=True)
|
67 |
+
|
68 |
+
print(response) # Debugging line
|
69 |
+
|
70 |
+
st.write("Replies:")
|
71 |
+
if isinstance(response["output_text"], str):
|
72 |
+
response_list = [response["output_text"]]
|
73 |
+
else:
|
74 |
+
response_list = response["output_text"]
|
75 |
+
|
76 |
+
for text in response_list:
|
77 |
+
st.write(text)
|
78 |
+
# Convert text to speech for each response
|
79 |
+
text_to_speech(text)
|
80 |
+
|
81 |
+
def main():
|
82 |
+
|
83 |
+
st.set_page_config(layout="centered")
|
84 |
+
st.header("Chat with DOCS")
|
85 |
+
st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
|
86 |
+
api_key = st.secrets["inference_api_key"]
|
87 |
+
|
88 |
+
|
89 |
+
with st.sidebar:
|
90 |
+
st.header("Chat with PDF")
|
91 |
+
# st.title("Menu:")
|
92 |
+
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit Button", accept_multiple_files=True, type=["pdf"])
|
93 |
+
if st.button("Submit"):
|
94 |
+
with st.spinner("Processing..."):
|
95 |
+
raw_text = get_pdf_text(pdf_docs)
|
96 |
+
text_chunks = get_text_chunks(raw_text)
|
97 |
+
get_vector_store(text_chunks, api_key)
|
98 |
+
st.success("Done")
|
99 |
+
|
100 |
+
if st.button("Summerize Chat"):
|
101 |
+
st.switch_page('app.py')
|
102 |
+
|
103 |
+
# Check if any document is uploaded
|
104 |
+
if pdf_docs:
|
105 |
+
user_question = st.text_input("Ask a question from the Docs")
|
106 |
+
if user_question:
|
107 |
+
user_input(user_question, api_key)
|
108 |
+
else:
|
109 |
+
st.write("Please upload a document first to ask questions.")
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
main()
|