Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +104 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains.question_answering import load_qa_chain
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
import tempfile
|
10 |
+
from gtts import gTTS
|
11 |
+
import os
|
12 |
+
|
13 |
+
def text_to_speech(text):
|
14 |
+
tts = gTTS(text=text, lang='en')
|
15 |
+
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
|
16 |
+
temp_filename = audio_file.name
|
17 |
+
tts.save(temp_filename)
|
18 |
+
st.audio(temp_filename, format='audio/mp3')
|
19 |
+
os.remove(temp_filename)
|
20 |
+
|
21 |
+
def get_pdf_text(pdf_docs):
|
22 |
+
text=""
|
23 |
+
for pdf in pdf_docs:
|
24 |
+
pdf_reader= PdfReader(pdf)
|
25 |
+
for page in pdf_reader.pages:
|
26 |
+
text+= page.extract_text()
|
27 |
+
return text
|
28 |
+
|
29 |
+
def get_text_chunks(text):
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
31 |
+
chunks = text_splitter.split_text(text)
|
32 |
+
return chunks
|
33 |
+
|
34 |
+
def get_vector_store(text_chunks, api_key):
|
35 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
36 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
37 |
+
vector_store.save_local("faiss_index")
|
38 |
+
|
39 |
+
def get_conversational_chain():
|
40 |
+
|
41 |
+
prompt_template = """
|
42 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
43 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
44 |
+
Context:\n {context}?\n
|
45 |
+
Question: \n{question}\n
|
46 |
+
|
47 |
+
Answer:
|
48 |
+
"""
|
49 |
+
|
50 |
+
model = ChatGroq(temperature=0, groq_api_key="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", model_name="llama3-8b-8192")
|
51 |
+
|
52 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
53 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
54 |
+
|
55 |
+
return chain
|
56 |
+
|
57 |
+
def user_input(user_question, api_key):
|
58 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
59 |
+
|
60 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
61 |
+
docs = new_db.similarity_search(user_question)
|
62 |
+
|
63 |
+
chain = get_conversational_chain()
|
64 |
+
|
65 |
+
response = chain(
|
66 |
+
{"input_documents":docs, "question": user_question}
|
67 |
+
, return_only_outputs=True)
|
68 |
+
|
69 |
+
print(response) # Debugging line
|
70 |
+
|
71 |
+
st.write("Replies:")
|
72 |
+
if isinstance(response["output_text"], str):
|
73 |
+
response_list = [response["output_text"]]
|
74 |
+
else:
|
75 |
+
response_list = response["output_text"]
|
76 |
+
|
77 |
+
for text in response_list:
|
78 |
+
st.write(text)
|
79 |
+
# Convert text to speech for each response
|
80 |
+
text_to_speech(text)
|
81 |
+
|
82 |
+
def main():
|
83 |
+
st.set_page_config("Chat PDF")
|
84 |
+
st.header("Chat with PDF")
|
85 |
+
|
86 |
+
api_key = st.secrets["inference_api_key"]
|
87 |
+
|
88 |
+
user_question = st.text_input("Ask a Question from the PDF Files")
|
89 |
+
|
90 |
+
if user_question:
|
91 |
+
user_input(user_question, api_key)
|
92 |
+
|
93 |
+
with st.sidebar:
|
94 |
+
st.title("Menu:")
|
95 |
+
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
|
96 |
+
if st.button("Submit & Process"):
|
97 |
+
with st.spinner("Processing..."):
|
98 |
+
raw_text = get_pdf_text(pdf_docs)
|
99 |
+
text_chunks = get_text_chunks(raw_text)
|
100 |
+
get_vector_store(text_chunks, api_key)
|
101 |
+
st.success("Done")
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
streamlit
|
3 |
+
faiss-cpu
|
4 |
+
PyPDF2
|
5 |
+
langchain
|
6 |
+
langchain-groq
|
7 |
+
langchain-community
|
8 |
+
python-dotenv
|
9 |
+
gtts
|