Huzaifa367 commited on
Commit
5c51702
·
verified ·
1 Parent(s): 741623d

Delete pages/textimage.py

Browse files
Files changed (1) hide show
  1. pages/textimage.py +0 -104
pages/textimage.py DELETED
@@ -1,104 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- import numpy as np
4
- from PIL import Image
5
- import random
6
- import uuid
7
- from diffusers import PixArtAlphaPipeline
8
-
9
- # Check for CUDA availability
10
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
11
-
12
- # # Load the PixArtAlphaPipeline
13
- # if torch.cuda.is_available():
14
- # pipe = PixArtAlphaPipeline.from_pretrained(
15
- # "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
16
- # torch_dtype=torch.float16,
17
- # use_safetensors=True,
18
- # )
19
- # pipe.to(device)
20
- # st.write("Model loaded successfully!")
21
- # else:
22
- # st.error("This demo requires GPU support, which is not available on this system.")
23
-
24
- # Load the PixArtAlphaPipeline
25
-
26
- pipe = PixArtAlphaPipeline.from_pretrained(
27
- "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
28
- torch_dtype=torch.float16,
29
- use_safetensors=True,
30
- )
31
- pipe.to(device)
32
- st.write("Model loaded successfully!")
33
-
34
- # Constants
35
- MAX_SEED = np.iinfo(np.int32).max
36
-
37
- # Function to save image and return the path
38
- def save_image(img):
39
- unique_name = str(uuid.uuid4()) + ".png"
40
- img.save(unique_name)
41
- return unique_name
42
-
43
- # Main function for image generation
44
- def generate_image(prompt, style, use_negative_prompt, negative_prompt, seed, width, height, inference_steps):
45
- generator = torch.Generator().manual_seed(seed)
46
-
47
- # Apply the selected style
48
- if style == "(No style)":
49
- prompt_text = prompt
50
- else:
51
- prompt_text, _ = apply_style(style, prompt, negative_prompt)
52
-
53
- # Generate the image
54
- images = pipe(
55
- prompt=prompt_text,
56
- negative_prompt=None,
57
- width=width,
58
- height=height,
59
- guidance_scale=0,
60
- num_inference_steps=inference_steps,
61
- generator=generator,
62
- num_images_per_prompt=1,
63
- use_resolution_binning=True,
64
- output_type="pil",
65
- ).images
66
-
67
- # Save the image and display
68
- if images:
69
- img_path = save_image(images[0])
70
- img = Image.open(img_path)
71
- st.image(img, caption="Generated Image", use_column_width=True)
72
- st.success("Image generated successfully!")
73
- else:
74
- st.error("Failed to generate image. Please try again.")
75
-
76
- # Helper function to apply selected style
77
- def apply_style(style_name, positive, negative):
78
- # Define styles dictionary (similar to your Gradio code)
79
- styles = {
80
- "(No style)": (positive, ""),
81
- "Cinematic": ("cinematic still " + positive, "anime, cartoon, ..."),
82
- "Realistic": ("Photorealistic " + positive, "drawing, painting, ..."),
83
- # Add other styles here...
84
- }
85
- return styles.get(style_name, styles["(No style)"])
86
-
87
- # Streamlit UI
88
- st.title("Instant Image Generator")
89
-
90
- prompt = st.text_input("Prompt", "Enter your prompt")
91
-
92
- style_names = ["(No style)", "Cinematic", "Realistic"] # Add other styles here...
93
- style = st.selectbox("Image Style", style_names)
94
-
95
- use_negative_prompt = st.checkbox("Use negative prompt")
96
- negative_prompt = st.text_input("Negative prompt", "")
97
-
98
- seed = st.slider("Seed", 0, MAX_SEED, 0)
99
- width = st.slider("Width", 256, 4192, 1024, step=32)
100
- height = st.slider("Height", 256, 4192, 1024, step=32)
101
- inference_steps = st.slider("Steps", 4, 20, 4)
102
-
103
- if st.button("Generate Image"):
104
- generate_image(prompt, style, use_negative_prompt, negative_prompt, seed, width, height, inference_steps)