Spaces:
Runtime error
Runtime error
Update pages/summarizer.py
Browse files- pages/summarizer.py +33 -73
pages/summarizer.py
CHANGED
@@ -1,87 +1,47 @@
|
|
1 |
import streamlit as st
|
2 |
-
from PyPDF2 import PdfReader
|
3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
from langchain_groq import ChatGroq
|
5 |
-
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chains.question_answering import load_qa_chain
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
import tempfile
|
10 |
-
from gtts import gTTS
|
11 |
import os
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
tts.save(temp_filename)
|
18 |
-
st.audio(temp_filename, format='audio/mp3')
|
19 |
-
os.remove(temp_filename)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
for
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
def get_text_chunks(text):
|
30 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
31 |
-
chunks = text_splitter.split_text(text)
|
32 |
-
return chunks
|
33 |
-
|
34 |
-
def get_vector_store(text_chunks, api_key):
|
35 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
36 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
37 |
-
vector_store.save_local("faiss_index")
|
38 |
-
|
39 |
-
def get_conversational_chain():
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
Question: \n{question}\n
|
46 |
-
Answer:
|
47 |
-
"""
|
48 |
-
|
49 |
-
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
60 |
-
docs = new_db.similarity_search(user_question)
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
, return_only_outputs=True)
|
67 |
|
68 |
-
print(response) # Debugging line
|
69 |
-
|
70 |
-
st.write("Replies:")
|
71 |
-
if isinstance(response["output_text"], str):
|
72 |
-
response_list = [response["output_text"]]
|
73 |
-
else:
|
74 |
-
response_list = response["output_text"]
|
75 |
-
|
76 |
-
for text in response_list:
|
77 |
-
st.write(text)
|
78 |
-
# Convert text to speech for each response
|
79 |
-
text_to_speech(text)
|
80 |
-
|
81 |
-
def main():
|
82 |
-
|
83 |
-
st.set_page_config(layout="centered")
|
84 |
-
|
85 |
with st.sidebar:
|
86 |
|
87 |
st.header("Chat with PDF")
|
@@ -95,7 +55,7 @@ def main():
|
|
95 |
st.success("Done")
|
96 |
|
97 |
if st.button("Chat Summarizer"):
|
98 |
-
|
99 |
# Check if any document is uploaded
|
100 |
if pdf_docs:
|
101 |
user_question = st.text_input("Ask a question from the Docs")
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import requests
|
4 |
|
5 |
+
# Define Hugging Face API details
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/Huzaifa367/chat-summarizer"
|
7 |
+
API_TOKEN = os.getenv("AUTH_TOKEN")
|
8 |
+
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
|
|
|
|
|
9 |
|
10 |
+
# Function to query Hugging Face API
|
11 |
+
def query_huggingface(payload):
|
12 |
+
try:
|
13 |
+
response = requests.post(API_URL, headers=HEADERS, json=payload)
|
14 |
+
response.raise_for_status() # Raise exception for non-2xx status codes
|
15 |
+
return response.json()
|
16 |
+
except requests.exceptions.RequestException as e:
|
17 |
+
st.error(f"Error querying Hugging Face API: {e}")
|
18 |
+
return {"summary_text": f"Error querying Hugging Face API: {e}"}
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def main():
|
22 |
+
|
23 |
+
st.set_page_config(layout="centered")
|
24 |
+
st.title("Chat Summarizer")
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# User input for chat message
|
27 |
+
user_message = st.text_input("User Message", "Enter your message here...")
|
28 |
|
29 |
+
# Process user input and query Hugging Face API
|
30 |
+
if st.button("Summarize"):
|
31 |
+
if user_message:
|
32 |
+
# Construct input text for summarization (no system message)
|
33 |
+
input_text = f"User: {user_message}"
|
34 |
|
35 |
+
# Query Hugging Face API for summarization
|
36 |
+
payload = {"inputs": input_text}
|
37 |
+
response = query_huggingface(payload)
|
|
|
|
|
38 |
|
39 |
+
# Extract summary text from the API response
|
40 |
+
summary_text = response.get("summary_text", "")
|
41 |
|
42 |
+
# Display summary text
|
43 |
+
st.text_area("Summary", value=summary_text)
|
|
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with st.sidebar:
|
46 |
|
47 |
st.header("Chat with PDF")
|
|
|
55 |
st.success("Done")
|
56 |
|
57 |
if st.button("Chat Summarizer"):
|
58 |
+
st.switch_page('app.py')
|
59 |
# Check if any document is uploaded
|
60 |
if pdf_docs:
|
61 |
user_question = st.text_input("Ask a question from the Docs")
|