docs-bot / app.py
Huzaifa367's picture
Update app.py
2395412 verified
raw
history blame
4.95 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import tempfile
from gtts import gTTS
import os
import docx
from pptx import Presentation
def text_to_speech(text):
tts = gTTS(text=text, lang='en')
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
temp_filename = audio_file.name
tts.save(temp_filename)
st.audio(temp_filename, format='audio/mp3')
os.remove(temp_filename)
def read_text_from_pdf(pdf_file):
pdf_reader = PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def read_text_from_docx(docx_file):
doc = docx.Document(docx_file)
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
return text
def read_text_from_pptx(pptx_file):
presentation = Presentation(pptx_file)
text = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
def get_text_from_file(file):
content = ""
if file.type == "application/pdf":
content = read_text_from_pdf(file)
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
content = read_text_from_docx(file)
elif file.type == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
content = read_text_from_pptx(file)
elif file.type == "text/plain":
content = file.getvalue().decode("utf-8")
return content
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents": docs, "question": user_question},
return_only_outputs=True
)
st.write("Replies:")
if isinstance(response["output_text"], str):
response_list = [response["output_text"]]
else:
response_list = response["output_text"]
for text in response_list:
st.write(text)
# Convert text to speech for each response
text_to_speech(text)
def main():
st.set_page_config(layout="centered")
st.header("Chat with DOCS")
st.markdown("<h1 style='font-size:24px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
api_key = st.secrets["inference_api_key"]
with st.sidebar:
st.title("Menu:")
uploaded_files = st.file_uploader("Upload your files (PDF, DOCX, PPTX, TXT)", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = ""
for file in uploaded_files:
file_text = get_text_from_file(file)
raw_text += file_text
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks, api_key)
st.success("Done")
# Check if any document is uploaded
if uploaded_files:
user_question = st.text_input("Ask a question from the Docs")
if user_question:
user_input(user_question, api_key)
else:
st.write("Please upload a document (PDF, DOCX, PPTX, TXT) first to ask questions.")
if __name__ == "__main__":
main()