Spaces:
Runtime error
Runtime error
import streamlit as st | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain_community.llms import HuggingFaceEndpoint | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
from transformers import AutoTokenizer | |
import transformers | |
import torch | |
import tqdm | |
import accelerate | |
import re | |
# Function to load PDF document and create doc splits | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Function to create vector database | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
# Initialize Langchain LLM chain | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): | |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
load_in_8bit=True, | |
) | |
# Add other LLM models initialization conditions here... | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
return qa_chain | |
# Function to process uploaded PDFs and initialize the database | |
def process_documents(list_file_obj, chunk_size, chunk_overlap): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
collection_name = create_collection_name(list_file_path[0]) | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
vector_db = create_db(doc_splits, collection_name) | |
return vector_db | |
# Streamlit app | |
def main(): | |
st.title("PDF-based Chatbot") | |
st.write("Ask any questions about your PDF documents") | |
# Step 1: Upload PDF documents | |
uploaded_files = st.file_uploader("Upload your PDF documents (single or multiple)", type=["pdf"], accept_multiple_files=True) | |
# Step 2: Process documents and initialize vector database | |
if uploaded_files: | |
chunk_size = st.slider("Chunk size", min_value=100, max_value=1000, value=600, step=20) | |
chunk_overlap = st.slider("Chunk overlap", min_value=10, max_value=200, value=40, step=10) | |
if st.button("Generate Vector Database"): | |
vector_db = process_documents(uploaded_files, chunk_size, chunk_overlap) | |
st.success("Vector database generated successfully!") | |
# Step 3: Initialize QA chain with selected LLM model | |
st.header("Initialize Question Answering (QA) Chain") | |
llm_model = st.selectbox("Choose LLM Model", list_llm_simple) | |
temperature = st.slider("Temperature", min_value=0.01, max_value=1.0, value=0.7, step=0.1) | |
max_tokens = st.slider("Max Tokens", min_value=224, max_value=4096, value=1024, step=32) | |
top_k = st.slider("Top-k Samples", min_value=1, max_value=10, value=3, step=1) | |
if st.button("Initialize QA Chain"): | |
qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db) | |
st.success("QA Chain initialized successfully!") | |
# Step 4: Chatbot interaction | |
st.header("Chatbot") | |
message = st.text_input("Type your message here") | |
if st.button("Submit"): | |
response = qa_chain(message) | |
st.write(f"Chatbot Response: {response['answer']}") | |
if __name__ == "__main__": | |
main() | |