DemoWi / app.py
Huyen2310's picture
Update app.py
b5a9eb4
# -*- coding: utf-8 -*-
"""demo 2/3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1QeNS57tZzvJudeNjQczKJ-PbN0l1tK6V
# Import library
"""
import os
import librosa
import gradio as gr
import noisereduce as nr
from scipy.io import wavfile
from transformers import WhisperProcessor, WhisperForConditionalGeneration
"""# Load model"""
from google.colab import drive
import os
drive.mount('/content/gdrive')
# load model and processor"
processor = WhisperProcessor.from_pretrained("/content/gdrive/MyDrive/ColabNotebookShared/Speech2TextHuyenNguyen/Model/FPTVinTest2")
model = WhisperForConditionalGeneration.from_pretrained("/content/gdrive/MyDrive/ColabNotebookShared/Speech2TextHuyenNguyen/Model/FPTVinTest2/checkpoint-1332").to("cuda")
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(task = "transcribe")
"""# Slipt audio"""
from pydub import AudioSegment
def preprocessing(path):
# CONVERT MP3 -> WAV
type_file = path.split(".")[-1]
sound = AudioSegment.from_file(path, type_file)
path_list = []
# SPLIT AUDIO
time_audio = int(sound.duration_seconds / 20) + 1
for i in range(time_audio):
t1 = i * 20 * 1000
t2 = (i+1) * 20 * 1000
if i == (time_audio-1):
newAudio = sound[t1:]
else:
newAudio = sound[t1:t2]
newAudio = newAudio.split_to_mono()[0]
newAudio = newAudio.set_frame_rate(16000) # convert frequency : mọi freq --> 16000kHz
audio_path = '/content/new_audio' + str(i) + '.wav'
newAudio.export(audio_path, format="wav")
path_list.append(audio_path)
return path_list
"""# Capitalization"""
!git lfs install
!git clone https://github.com/huyenxam/Vicap.git
# Commented out IPython magic to ensure Python compatibility.
# %cd {"/content/Vicap"}
import os
from gec_model import GecBERTModel
cache_dir = "./"
model_cap = GecBERTModel(
vocab_path=os.path.join(cache_dir, "vocabulary"),
model_paths="dragonSwing/vibert-capu",
split_chunk=True
)
"""# Spelling Correction"""
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer_spell = AutoTokenizer.from_pretrained("VietAI/vit5-base")
model_spell = AutoModelForSeq2SeqLM.from_pretrained("HuyenNguyen/Vi-test1")
model_spell.cuda()
def spelling_text(text):
encoding = tokenizer_spell(text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model_spell.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=30,
)
for output in outputs:
line = tokenizer_spell.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
return line
def spelling(transcription):
sentences = transcription.split(" ")
len_sen = int(len(sentences) / 25) + 1
result = ""
for i in range(len_sen):
t1 = i * 24
t2 = (i+1) * 24
if i == (len_sen - 1):
text = " ".join(sentences[t1:])
else:
text = " ".join(sentences[t1:t2])
result = result + " " + spelling_text(text)
return result
"""# Speech To Text"""
import torch
import numpy as np
import gradio as gr
from scipy.io.wavfile import write
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
path = microphone if microphone is not None else file_upload
X_new, sr_new = librosa.load(path)
dst = "/content/audio.wav"
write(dst, sr_new, X_new)
# Split audio
transcription = ""
path_list = preprocessing(dst)
for audio_path in path_list:
# X, sr = noise(audio_path)
X, sr = librosa.load(audio_path, sr=16000)
input_features = processor(X.astype('float16'), return_tensors="pt").input_features
# predicted_ids = model.generate(input_features.to("cuda"), temperature=1.0)
predicted_ids = model.generate(input_features.to("cuda"))
text = processor.batch_decode(predicted_ids, skip_special_tokens = True)[0]
transcription = transcription + " " + text
transcription_spell = spelling(transcription)
transcription_cap = model_cap(transcription_spell)[0]
# sentence_result = "Câu gốc: " + transcription + "\n" + "Câu sửa lỗi chính tả: " + transcription_spell + "\n" + "Thêm dấu: " + transcription_cap
return transcription_cap
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
# yt = pt.YouTube(yt_url)
# html_embed_str = _return_yt_html_embed(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
# src = "/content/audio.mp3"
# dst = "/content/audio.wav"
# stream.download(filename=src)
# X_new, sr_new = librosa.load(src)
# write(dst, sr_new, X_new)
# # X_new, sr_new = librosa.load(src)
# path_list = preprocessing(dst)
# transcription = " "
# for audio_path in path_list:
# # X, sr = noise(audio_path)
# X, sr = librosa.load(audio_path, sr=16000)
# input_features = processor(X.astype('float16'), return_tensors="pt").input_features
# predicted_ids = model.generate(input_features.to("cuda"))
# text = processor.batch_decode(predicted_ids, skip_special_tokens = True)[0]
# transcription = transcription + " " + text
# transcription = spelling(transcription)
# transcription = model_cap(transcription)[0]
return "ouput", 'This feature is temporarily locked'
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="PYLAB Demo: Transcribe Audio",
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="PYLAB Demo: Transcribe YouTube",
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)