Spaces:
Sleeping
Sleeping
import os | |
import yaml | |
import torch | |
import argparse | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from copy import deepcopy | |
from torch.nn.parallel import DataParallel, DistributedDataParallel | |
from huggingface_hub import hf_hub_download | |
from gradio_imageslider import ImageSlider | |
## local code | |
from models import seemore | |
def dict2namespace(config): | |
namespace = argparse.Namespace() | |
for key, value in config.items(): | |
if isinstance(value, dict): | |
new_value = dict2namespace(value) | |
else: | |
new_value = value | |
setattr(namespace, key, new_value) | |
return namespace | |
def load_img (filename, norm=True,): | |
img = np.array(Image.open(filename).convert("RGB")) | |
h, w = img.shape[:2] | |
if w > 1920 or h > 1080: | |
new_h, new_w = h // 4, w // 4 | |
img = np.array(Image.fromarray(img).resize((new_w, new_h), Image.BICUBIC)) | |
if norm: | |
img = img / 255. | |
img = img.astype(np.float32) | |
return img | |
def process_img (image): | |
img = np.array(image) | |
img = img / 255. | |
img = img.astype(np.float32) | |
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
x_hat = model(y) | |
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() | |
restored_img = np.clip(restored_img, 0. , 1.) | |
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 | |
#return Image.fromarray(restored_img) # | |
return (image, Image.fromarray(restored_img)) | |
def load_network(net, load_path, strict=True, param_key='params'): | |
if isinstance(net, (DataParallel, DistributedDataParallel)): | |
net = net.module | |
load_net = torch.load(load_path, map_location=lambda storage, loc: storage) | |
if param_key is not None: | |
if param_key not in load_net and 'params' in load_net: | |
param_key = 'params' | |
load_net = load_net[param_key] | |
# remove unnecessary 'module.' | |
for k, v in deepcopy(load_net).items(): | |
if k.startswith('module.'): | |
load_net[k[7:]] = v | |
load_net.pop(k) | |
net.load_state_dict(load_net, strict=strict) | |
CONFIG = "configs/eval_seemore_t_x4.yml" | |
hf_hub_download(repo_id="eduardzamfir/SeemoRe-T", filename="SeemoRe_T_X4.pth", local_dir="./") | |
MODEL_NAME = "SeemoRe_T_X4.pth" | |
# parse config file | |
with open(os.path.join(CONFIG), "r") as f: | |
config = yaml.safe_load(f) | |
cfg = dict2namespace(config) | |
device = torch.device("cpu") | |
model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans, | |
num_experts=cfg.model.num_experts, num_layers=cfg.model.num_layers, embedding_dim=cfg.model.embedding_dim, | |
img_range=cfg.model.img_range, use_shuffle=cfg.model.use_shuffle, global_kernel_size=cfg.model.global_kernel_size, | |
recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk) | |
model = model.to(device) | |
print ("IMAGE MODEL CKPT:", MODEL_NAME) | |
load_network(model, MODEL_NAME, strict=True, param_key='params') | |
title = "See More Details" | |
description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining - ICML 2024, Vienna, Austria | |
#### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/) | |
#### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland** | |
#### **<sup>*</sup> Corresponding authors** | |
<details> | |
<summary> <b> Abstract</b> (click me to read)</summary> | |
<p> | |
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings | |
</p> | |
</details> | |
#### Drag the slider on the super-resolution image left and right to see the changes in the image details. | |
<br> | |
<code> | |
@inproceedings{zamfir2024details, | |
title={See More Details: Efficient Image Super-Resolution by Experts Mining}, | |
author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte}, | |
booktitle={International Conference on Machine Learning}, | |
year={2024}, | |
organization={PMLR} | |
} | |
</code> | |
<br> | |
''' | |
article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>" | |
#### Image,Prompts examples | |
examples = [['images/img002x4.png'], | |
['images/img003x4.png'], | |
['images/img004x4.png'], | |
['images/img035x4.png'], | |
['images/img053x4.png'], | |
['images/img064x4.png'], | |
['images/img083x4.png'], | |
['images/img092x4.png'], | |
] | |
css = """ | |
.image-frame img, .image-container img { | |
width: auto; | |
height: auto; | |
max-width: none; | |
} | |
""" | |
demo = gr.Interface( | |
fn=process_img, | |
inputs=[gr.Image(type="pil", label="Input", value="images/img002x4.png"),], | |
outputs=ImageSlider(label="Super-Resolved Image", type="pil"), #[gr.Image(type="pil", label="Ouput", min_width=500)], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
) | |
if __name__ == "__main__": | |
demo.launch() |