model examples
Browse files- app-controlnetlora.py +33 -41
- app-txt2imglora.py +3 -7
- requirements.txt +3 -3
- static/controlnetlora.html +49 -15
- static/txt2imglora.html +5 -1
app-controlnetlora.py
CHANGED
@@ -23,9 +23,6 @@ import torch
|
|
23 |
|
24 |
from canny_gpu import SobelOperator
|
25 |
|
26 |
-
# from controlnet_aux import OpenposeDetector
|
27 |
-
# import cv2
|
28 |
-
|
29 |
try:
|
30 |
import intel_extension_for_pytorch as ipex
|
31 |
except:
|
@@ -44,12 +41,10 @@ MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
|
44 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
45 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
46 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
47 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
48 |
|
49 |
WIDTH = 512
|
50 |
HEIGHT = 512
|
51 |
|
52 |
-
|
53 |
# check if MPS is available OSX only M1/M2/M3 chips
|
54 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
55 |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
@@ -76,37 +71,40 @@ controlnet_canny = ControlNetModel.from_pretrained(
|
|
76 |
|
77 |
canny_torch = SobelOperator(device=device)
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
if SAFETY_CHECKER == "True":
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
else:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
pipe
|
96 |
-
pipe
|
97 |
-
pipe.
|
98 |
-
|
|
|
99 |
|
100 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
101 |
-
|
102 |
|
103 |
-
# Load LCM LoRA
|
104 |
-
pipe.load_lora_weights(
|
105 |
-
lcm_lora_id,
|
106 |
-
weight_name="lcm_sd_lora.safetensors",
|
107 |
-
adapter_name="lcm",
|
108 |
-
use_auth_token=HF_TOKEN,
|
109 |
-
)
|
110 |
|
111 |
compel_proc = Compel(
|
112 |
tokenizer=pipe.tokenizer,
|
@@ -142,16 +140,17 @@ class InputParams(BaseModel):
|
|
142 |
canny_low_threshold: float = 0.31
|
143 |
canny_high_threshold: float = 0.78
|
144 |
debug_canny: bool = False
|
|
|
145 |
|
146 |
|
147 |
-
def predict(
|
148 |
-
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
149 |
-
):
|
150 |
generator = torch.manual_seed(params.seed)
|
151 |
|
152 |
control_image = canny_torch(
|
153 |
input_image, params.canny_low_threshold, params.canny_high_threshold
|
154 |
)
|
|
|
|
|
155 |
results = pipe(
|
156 |
control_image=control_image,
|
157 |
prompt_embeds=prompt_embeds,
|
@@ -245,23 +244,16 @@ async def stream(user_id: uuid.UUID):
|
|
245 |
|
246 |
async def generate():
|
247 |
last_prompt: str = None
|
248 |
-
prompt_embeds: torch.Tensor = None
|
249 |
while True:
|
250 |
data = await queue.get()
|
251 |
input_image = data["image"]
|
252 |
params = data["params"]
|
253 |
if input_image is None:
|
254 |
continue
|
255 |
-
# avoid recalculate prompt embeds
|
256 |
-
if last_prompt != params.prompt:
|
257 |
-
print("new prompt")
|
258 |
-
prompt_embeds = compel_proc(params.prompt)
|
259 |
-
last_prompt = params.prompt
|
260 |
|
261 |
image = predict(
|
262 |
input_image,
|
263 |
params,
|
264 |
-
prompt_embeds,
|
265 |
)
|
266 |
if image is None:
|
267 |
continue
|
|
|
23 |
|
24 |
from canny_gpu import SobelOperator
|
25 |
|
|
|
|
|
|
|
26 |
try:
|
27 |
import intel_extension_for_pytorch as ipex
|
28 |
except:
|
|
|
41 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
42 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
43 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
|
|
44 |
|
45 |
WIDTH = 512
|
46 |
HEIGHT = 512
|
47 |
|
|
|
48 |
# check if MPS is available OSX only M1/M2/M3 chips
|
49 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
50 |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
|
|
71 |
|
72 |
canny_torch = SobelOperator(device=device)
|
73 |
|
74 |
+
models_id = [
|
75 |
+
"wavymulder/Analog-Diffusion",
|
76 |
+
"nitrosocke/Ghibli-Diffusion",
|
77 |
+
"nitrosocke/mo-di-diffusion",
|
78 |
+
]
|
79 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
80 |
|
81 |
if SAFETY_CHECKER == "True":
|
82 |
+
pipes = {}
|
83 |
+
for model_id in models_id:
|
84 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
85 |
+
model_id,
|
86 |
+
controlnet=controlnet_canny,
|
87 |
+
)
|
88 |
+
pipes[model_id] = pipe
|
89 |
else:
|
90 |
+
pipes = {}
|
91 |
+
for model_id in models_id:
|
92 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
93 |
+
model_id,
|
94 |
+
safety_checker=None,
|
95 |
+
controlnet=controlnet_canny,
|
96 |
+
)
|
97 |
+
pipes[model_id] = pipe
|
98 |
+
for pipe in pipes.values():
|
99 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
100 |
+
pipe.set_progress_bar_config(disable=True)
|
101 |
+
pipe.to(device=device, dtype=torch_dtype).to(device)
|
102 |
|
103 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
104 |
+
pipe.enable_attention_slicing()
|
105 |
|
106 |
+
# Load LCM LoRA
|
107 |
+
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
compel_proc = Compel(
|
110 |
tokenizer=pipe.tokenizer,
|
|
|
140 |
canny_low_threshold: float = 0.31
|
141 |
canny_high_threshold: float = 0.78
|
142 |
debug_canny: bool = False
|
143 |
+
model_id: str = "nitrosocke/Ghibli-Diffusion"
|
144 |
|
145 |
|
146 |
+
def predict(input_image: Image.Image, params: InputParams):
|
|
|
|
|
147 |
generator = torch.manual_seed(params.seed)
|
148 |
|
149 |
control_image = canny_torch(
|
150 |
input_image, params.canny_low_threshold, params.canny_high_threshold
|
151 |
)
|
152 |
+
prompt_embeds = compel_proc(params.prompt)
|
153 |
+
pipe = pipes[params.model_id]
|
154 |
results = pipe(
|
155 |
control_image=control_image,
|
156 |
prompt_embeds=prompt_embeds,
|
|
|
244 |
|
245 |
async def generate():
|
246 |
last_prompt: str = None
|
|
|
247 |
while True:
|
248 |
data = await queue.get()
|
249 |
input_image = data["image"]
|
250 |
params = data["params"]
|
251 |
if input_image is None:
|
252 |
continue
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
image = predict(
|
255 |
input_image,
|
256 |
params,
|
|
|
257 |
)
|
258 |
if image is None:
|
259 |
continue
|
app-txt2imglora.py
CHANGED
@@ -35,7 +35,6 @@ MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
|
35 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
36 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
37 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
38 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
39 |
|
40 |
WIDTH = 512
|
41 |
HEIGHT = 512
|
@@ -61,7 +60,7 @@ if mps_available:
|
|
61 |
torch_dtype = torch.float32
|
62 |
|
63 |
model_id = "wavymulder/Analog-Diffusion"
|
64 |
-
lcm_lora_id = "
|
65 |
|
66 |
if SAFETY_CHECKER == "True":
|
67 |
pipe = DiffusionPipeline.from_pretrained(model_id)
|
@@ -83,13 +82,11 @@ if TORCH_COMPILE:
|
|
83 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
84 |
|
85 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
86 |
-
|
87 |
# Load LCM LoRA
|
88 |
pipe.load_lora_weights(
|
89 |
lcm_lora_id,
|
90 |
-
|
91 |
-
adapter_name="lcm",
|
92 |
-
use_auth_token=HF_TOKEN,
|
93 |
)
|
94 |
|
95 |
compel_proc = Compel(
|
@@ -121,7 +118,6 @@ def predict(params: InputParams):
|
|
121 |
guidance_scale=params.guidance_scale,
|
122 |
width=params.width,
|
123 |
height=params.height,
|
124 |
-
# original_inference_steps=params.lcm_steps,
|
125 |
output_type="pil",
|
126 |
)
|
127 |
nsfw_content_detected = (
|
|
|
35 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
36 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
37 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
|
|
38 |
|
39 |
WIDTH = 512
|
40 |
HEIGHT = 512
|
|
|
60 |
torch_dtype = torch.float32
|
61 |
|
62 |
model_id = "wavymulder/Analog-Diffusion"
|
63 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
64 |
|
65 |
if SAFETY_CHECKER == "True":
|
66 |
pipe = DiffusionPipeline.from_pretrained(model_id)
|
|
|
82 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
83 |
|
84 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
85 |
+
|
86 |
# Load LCM LoRA
|
87 |
pipe.load_lora_weights(
|
88 |
lcm_lora_id,
|
89 |
+
adapter_name="lcm"
|
|
|
|
|
90 |
)
|
91 |
|
92 |
compel_proc = Compel(
|
|
|
118 |
guidance_scale=params.guidance_scale,
|
119 |
width=params.width,
|
120 |
height=params.height,
|
|
|
121 |
output_type="pil",
|
122 |
)
|
123 |
nsfw_content_detected = (
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
|
2 |
-
git+https://github.com/huggingface/diffusers.git@6110d7c95f630479cf01340cc8a8141c1e359f09
|
3 |
transformers==4.34.1
|
4 |
gradio==3.50.2
|
5 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
@@ -10,4 +9,5 @@ Pillow==10.1.0
|
|
10 |
accelerate==0.24.0
|
11 |
compel==2.0.2
|
12 |
controlnet-aux==0.0.7
|
13 |
-
peft==0.6.0
|
|
|
|
1 |
+
diffusers==0.23.0
|
|
|
2 |
transformers==4.34.1
|
3 |
gradio==3.50.2
|
4 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
|
|
9 |
accelerate==0.24.0
|
10 |
compel==2.0.2
|
11 |
controlnet-aux==0.0.7
|
12 |
+
peft==0.6.0
|
13 |
+
xformers
|
static/controlnetlora.html
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
|
4 |
<head>
|
5 |
<meta charset="UTF-8">
|
6 |
-
<title>Real-Time Latent Consistency Model ControlNet</title>
|
7 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
<script
|
9 |
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
@@ -93,8 +93,9 @@
|
|
93 |
}
|
94 |
|
95 |
async function videoTimeUpdateHandler() {
|
96 |
-
const
|
97 |
-
|
|
|
98 |
|
99 |
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
100 |
const videoW = webcamVideo.videoWidth;
|
@@ -118,7 +119,8 @@
|
|
118 |
"controlnet_end": getValue("#controlnet_end"),
|
119 |
"canny_low_threshold": getValue("#canny_low_threshold"),
|
120 |
"canny_high_threshold": getValue("#canny_high_threshold"),
|
121 |
-
"debug_canny": getValue("#debug_canny")
|
|
|
122 |
}));
|
123 |
}
|
124 |
let mediaDevices = [];
|
@@ -220,8 +222,33 @@
|
|
220 |
console.log(err);
|
221 |
}
|
222 |
}
|
|
|
|
|
|
|
|
|
|
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
|
|
225 |
const lcmLive = LCMLive(videoEl, imageEl);
|
226 |
startBtn.addEventListener("click", async () => {
|
227 |
try {
|
@@ -263,16 +290,18 @@
|
|
263 |
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
264 |
<article class="text-center max-w-xl mx-auto">
|
265 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
266 |
-
<h2 class="text-2xl font-bold mb-4">ControlNet
|
267 |
<p class="text-sm">
|
268 |
This demo showcases
|
269 |
-
<a href="https://huggingface.co/
|
270 |
-
class="text-blue-500 underline hover:no-underline">LCM</a>
|
271 |
-
using
|
272 |
-
|
273 |
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
274 |
-
stream server.
|
275 |
-
|
|
|
|
|
276 |
</p>
|
277 |
</article>
|
278 |
<div>
|
@@ -285,9 +314,14 @@
|
|
285 |
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
286 |
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
287 |
title="Prompt, this is an example, feel free to modify"
|
288 |
-
placeholder="Add your prompt here...">
|
289 |
</div>
|
290 |
</div>
|
|
|
|
|
|
|
|
|
|
|
291 |
<div class="">
|
292 |
<details>
|
293 |
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
@@ -310,7 +344,7 @@
|
|
310 |
0.3</output>
|
311 |
<!-- -->
|
312 |
<label class="text-sm font-medium" for="strength">Strength</label>
|
313 |
-
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.
|
314 |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
315 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
316 |
0.5</output>
|
@@ -357,7 +391,7 @@
|
|
357 |
</button>
|
358 |
<!-- -->
|
359 |
<!-- -->
|
360 |
-
<label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
361 |
<div class="col-span-2 flex gap-2">
|
362 |
<div class="flex gap-1">
|
363 |
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
@@ -369,7 +403,7 @@
|
|
369 |
lass="cursor-pointer">
|
370 |
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
371 |
</div>
|
372 |
-
</div>
|
373 |
<!-- -->
|
374 |
<!-- -->
|
375 |
<label class="text-sm font-medium" for="debug_canny">Debug Canny</label>
|
|
|
3 |
|
4 |
<head>
|
5 |
<meta charset="UTF-8">
|
6 |
+
<title>Real-Time Latent Consistency Model ControlNet Lora</title>
|
7 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
<script
|
9 |
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
|
|
93 |
}
|
94 |
|
95 |
async function videoTimeUpdateHandler() {
|
96 |
+
const model_id = getValue("input[name=base_model]:checked");
|
97 |
+
|
98 |
+
const [WIDTH, HEIGHT] = [512, 512];
|
99 |
|
100 |
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
101 |
const videoW = webcamVideo.videoWidth;
|
|
|
119 |
"controlnet_end": getValue("#controlnet_end"),
|
120 |
"canny_low_threshold": getValue("#canny_low_threshold"),
|
121 |
"canny_high_threshold": getValue("#canny_high_threshold"),
|
122 |
+
"debug_canny": getValue("#debug_canny"),
|
123 |
+
"model_id": model_id
|
124 |
}));
|
125 |
}
|
126 |
let mediaDevices = [];
|
|
|
222 |
console.log(err);
|
223 |
}
|
224 |
}
|
225 |
+
const models_id = {
|
226 |
+
"nitrosocke/Ghibli-Diffusion": "ghibli style",
|
227 |
+
"nitrosocke/mo-di-diffusion": "modern disney style",
|
228 |
+
"wavymulder/Analog-Diffusion": "analog style"
|
229 |
+
}
|
230 |
|
231 |
+
document.addEventListener("DOMContentLoaded", () => {
|
232 |
+
const models_options = document.querySelector("#models_options");
|
233 |
+
Object.entries(models_id).forEach(([model, activation], i) => {
|
234 |
+
const modelEl = document.createElement("div");
|
235 |
+
modelEl.innerHTML = `
|
236 |
+
<input type="radio" id="${model}" name="base_model" value="${model}" class="cursor-pointer" ${i === 0 ? "checked" : ""}>
|
237 |
+
<label for="${model}" class="text-sm cursor-pointer" title="Use the keyword on your prompt: ${activation}">${model}: <b>${activation}</b>
|
238 |
+
<a href="https://hf.co/${model}" title="Model link on Hugging Face" target="_blank" class="text-sm text-blue-500 underline hover:no-underline">⤴️</a></label>
|
239 |
+
`;
|
240 |
+
models_options.appendChild(modelEl);
|
241 |
+
})
|
242 |
+
models_options.addEventListener("change", () => {
|
243 |
+
const model = getValue("input[name=base_model]:checked");
|
244 |
+
const prompt = getValue("#prompt");
|
245 |
+
const activation = models_id[model];
|
246 |
+
if (prompt.includes(activation))
|
247 |
+
return;
|
248 |
+
document.querySelector("#prompt").value = `${activation} portrait of a person`;
|
249 |
+
})
|
250 |
|
251 |
+
})
|
252 |
const lcmLive = LCMLive(videoEl, imageEl);
|
253 |
startBtn.addEventListener("click", async () => {
|
254 |
try {
|
|
|
290 |
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
291 |
<article class="text-center max-w-xl mx-auto">
|
292 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
293 |
+
<h2 class="text-2xl font-bold mb-4">ControlNet LoRa</h2>
|
294 |
<p class="text-sm">
|
295 |
This demo showcases
|
296 |
+
<a href="https://huggingface.co/blog/lcm_lora" target="_blank"
|
297 |
+
class="text-blue-500 underline hover:no-underline">LCM LoRa</a> ControlNet pipeline
|
298 |
+
using <a
|
299 |
+
href="https://huggingface.co/docs/diffusers/api/pipelines/latent_consistency_models#latent-consistency-models"
|
300 |
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
301 |
+
stream server.
|
302 |
+
</p>
|
303 |
+
<p class="text-sm">
|
304 |
+
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU.
|
305 |
</p>
|
306 |
</article>
|
307 |
<div>
|
|
|
314 |
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
315 |
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
316 |
title="Prompt, this is an example, feel free to modify"
|
317 |
+
placeholder="Add your prompt here...">ghibli style portrait of a person</textarea>
|
318 |
</div>
|
319 |
</div>
|
320 |
+
<!-- -->
|
321 |
+
<label class="font-medium" for="base_model">Base Model</label>
|
322 |
+
<fieldset class="flex flex-col gap-2" id="models_options">
|
323 |
+
</fieldset>
|
324 |
+
<!-- -->
|
325 |
<div class="">
|
326 |
<details>
|
327 |
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
|
|
344 |
0.3</output>
|
345 |
<!-- -->
|
346 |
<label class="text-sm font-medium" for="strength">Strength</label>
|
347 |
+
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.0001" value="0.50"
|
348 |
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
349 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
350 |
0.5</output>
|
|
|
391 |
</button>
|
392 |
<!-- -->
|
393 |
<!-- -->
|
394 |
+
<!-- <label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
395 |
<div class="col-span-2 flex gap-2">
|
396 |
<div class="flex gap-1">
|
397 |
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
|
|
403 |
lass="cursor-pointer">
|
404 |
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
405 |
</div>
|
406 |
+
</div> -->
|
407 |
<!-- -->
|
408 |
<!-- -->
|
409 |
<label class="text-sm font-medium" for="debug_canny">Debug Canny</label>
|
static/txt2imglora.html
CHANGED
@@ -212,6 +212,10 @@
|
|
212 |
stream server. Featuring <a href="https://huggingface.co/wavymulder/Analog-Diffusion" target="_blank"
|
213 |
class="text-blue-500 underline hover:no-underline">Analog Diffusion</a> Model.
|
214 |
</p>
|
|
|
|
|
|
|
|
|
215 |
</article>
|
216 |
<div>
|
217 |
<h2 class="font-medium">Prompt</h2>
|
@@ -250,7 +254,7 @@
|
|
250 |
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="5" step="0.0001"
|
251 |
value="0.8" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
252 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
253 |
-
8
|
254 |
<!-- -->
|
255 |
<label class="text-sm font-medium" for="seed">Seed</label>
|
256 |
<input type="number" id="seed" name="seed" value="299792458"
|
|
|
212 |
stream server. Featuring <a href="https://huggingface.co/wavymulder/Analog-Diffusion" target="_blank"
|
213 |
class="text-blue-500 underline hover:no-underline">Analog Diffusion</a> Model.
|
214 |
</p>
|
215 |
+
<p class="text-sm">
|
216 |
+
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU, affecting
|
217 |
+
real-time performance.
|
218 |
+
</p>
|
219 |
</article>
|
220 |
<div>
|
221 |
<h2 class="font-medium">Prompt</h2>
|
|
|
254 |
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="5" step="0.0001"
|
255 |
value="0.8" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
256 |
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
257 |
+
0.8</output>
|
258 |
<!-- -->
|
259 |
<label class="text-sm font-medium" for="seed">Seed</label>
|
260 |
<input type="number" id="seed" name="seed" value="299792458"
|