Spaces:
Running
Running
from fastapi import FastAPI, Request | |
from fastapi.responses import FileResponse | |
import torch | |
import numpy as np | |
import scipy.io.wavfile | |
from transformers import VitsModel, AutoTokenizer | |
import re | |
app = FastAPI() | |
# Load model and tokenizer | |
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model") | |
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
model.eval() | |
number_words = { | |
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan", | |
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban", | |
11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex", | |
14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix", | |
17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal", | |
20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton", | |
60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan", | |
100: "boqol", 1000: "kun" | |
} | |
def number_to_words(number): | |
number = int(number) | |
if number < 20: | |
return number_words[number] | |
elif number < 100: | |
tens, unit = divmod(number, 10) | |
return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "") | |
elif number < 1000: | |
hundreds, remainder = divmod(number, 100) | |
part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol" | |
if remainder: | |
part += " iyo " + number_to_words(remainder) | |
return part | |
elif number < 1000000: | |
thousands, remainder = divmod(number, 1000) | |
words = [number_to_words(thousands) + " kun" if thousands != 1 else "kun"] | |
if remainder: | |
words.append("iyo " + number_to_words(remainder)) | |
return " ".join(words) | |
else: | |
return str(number) | |
def normalize_text(text): | |
numbers = re.findall(r'\d+', text) | |
for num in numbers: | |
text = text.replace(num, number_to_words(num)) | |
text = text.replace("KH", "qa").replace("Z", "S") | |
text = text.replace("SH", "SHa'a").replace("DH", "Dha'a") | |
text = text.replace("ZamZam", "SamSam") | |
return text | |
async def tts(request: Request): | |
data = await request.json() | |
text = normalize_text(data["text"]) | |
inputs = tokenizer(text, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
waveform = model(**inputs).waveform.squeeze().cpu().numpy() | |
filename = "output.wav" | |
scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16)) | |
return FileResponse(filename, media_type="audio/wav") | |