Hunzla commited on
Commit
1a63ef2
1 Parent(s): 4418def

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -11
app.py CHANGED
@@ -1,16 +1,18 @@
1
  from transformers import pipeline
2
  asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
3
  from difflib import SequenceMatcher
4
-
 
 
5
  # List of commands
6
- commands = [
7
- "نمائندے ایجنٹ نمائندہ",
8
- " سم ایکٹیویٹ ",
9
- " سم بلاک بند ",
10
- "موبائل پیکیجز انٹرنیٹ پیکیج",
11
- " چالان جمع چلان",
12
- " گانا "
13
- ]
14
  # replies = [
15
  # 1,2,
16
  # ]
@@ -29,8 +31,9 @@ def find_most_similar_command(statement, command_list):
29
  i+=1
30
 
31
  return best_match,reply
32
- def transcribe_the_command(audio):
33
  import soundfile as sf
 
34
  sample_rate, audio_data = audio
35
  file_name = "recorded_audio.wav"
36
  sf.write(file_name, audio_data, sample_rate)
@@ -50,7 +53,7 @@ import gradio as gr
50
 
51
  iface = gr.Interface(
52
  fn=transcribe_the_command,
53
- inputs=gr.inputs.Audio(label="Recorded Audio",source="microphone"),
54
  outputs="text",
55
  title="Whisper Small Urdu Command",
56
  description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.",
 
1
  from transformers import pipeline
2
  asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
3
  from difflib import SequenceMatcher
4
+ import json
5
+ with open("tasks.json", "r") as json_file:
6
+ urdu_data = json.load(json_file)
7
  # List of commands
8
+ # commands = [
9
+ # "نمائندے ایجنٹ نمائندہ",
10
+ # " سم ایکٹیویٹ ",
11
+ # " سم بلاک بند ",
12
+ # "موبائل پیکیجز انٹرنیٹ پیکیج",
13
+ # " چالان جمع چلان",
14
+ # " گانا "
15
+ # ]
16
  # replies = [
17
  # 1,2,
18
  # ]
 
31
  i+=1
32
 
33
  return best_match,reply
34
+ def transcribe_the_command(audio,id):
35
  import soundfile as sf
36
+ commands=urdu_data[id]
37
  sample_rate, audio_data = audio
38
  file_name = "recorded_audio.wav"
39
  sf.write(file_name, audio_data, sample_rate)
 
53
 
54
  iface = gr.Interface(
55
  fn=transcribe_the_command,
56
+ inputs=[gr.inputs.Audio(label="Recorded Audio",source="microphone"),gr.inputs.Number(label="id")],
57
  outputs="text",
58
  title="Whisper Small Urdu Command",
59
  description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.",