Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import yolov5 | |
# Model | |
model_file = hf_hub_download(repo_id="HugoSchtr/yolov5_datacat", filename="best.pt") | |
model = yolov5.load(model_file) | |
def predict(im, threshold=0.50): | |
# g = (size / max(im.size)) # gain | |
# im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
model.conf = threshold | |
results = model(im) # inference | |
numpy_image = results.render()[0] | |
output_image = Image.fromarray(numpy_image) | |
return output_image | |
title = "YOLOv5 - Auction sale catalogues layout analysis" | |
description = "<p style='text-align: center'>YOLOv5 Gradio demo for auction sales catalogues layout analysis. Detecting titles and catalogues entries.</p>" | |
article = "<p style='text-align: center'>YOLOv5 source code : <a href='https://github.com/ultralytics/yolov5'>Source code</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>" | |
examples = [['./img_examples/12148-bpt6k1240127r.pdf_page_20.png', 0.50], | |
['./img_examples/12148-bpt6k1240127r.pdf_page_21.png', 0.50], | |
['./img_examples/12148-bpt6k1240127r.pdf_page_27.png', 0.50]] | |
demo=gr.Interface(fn=predict, | |
inputs=[gr.Image(type="pil", label="document image"), gr.Slider(maximum=1, step=0.01, value=0.50)], | |
outputs=gr.Image(type="pil", label="annotated document").style(height=700), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
theme="huggingface") | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |