Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" GPT Neo model configuration""" | |
import os | |
from typing import Tuple, Union | |
from transformers import AutoConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"EleutherAI/gpt-neo-125M": "https://huggingface.co/EleutherAI/gpt-neo-125M/resolve/main/config.json", | |
"EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", | |
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo | |
} | |
class VGPTNeoConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT | |
Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with | |
the defaults will yield a similar configuration to that of the GPTNeo | |
[EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
TODO: this doc is completely out of sync with the actual args | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50257): | |
Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different | |
tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`]. | |
additional_vocab_size (`int`, *optional`, defaults to 0): | |
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens | |
are always trainable whereas regular vocab tokens can be frozen or not. | |
attention_types (`List`, *optional*, defaults to `[[["global", "local"], 12]]`): | |
The type of attention for each layer in a `List` of the following format `[[["attention_type"], | |
num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the | |
value of `attention_type` from `["global", "local"]` | |
hidden_size (`int`, *optional*, defaults to 2048): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
num_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 8192): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
embed_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`GPTNeoModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
alpha_initializer (`str`, *optional*, defaults to `"ones"`): | |
Initialization type for the alphas. | |
alphas_initializer_range (`float`, *optional*, defaults to 0.0): | |
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. | |
alpha_type (`str`, *optional*, defaults to `"vector"`): | |
Whether the gating alphas should be vectors or single floats. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
cross_layer_interval (`int`, *optional*, default to 1) | |
Interval for cross attention (from text to image) layers. | |
Example: | |
```python | |
>>> from transformers import GPTNeoConfig, GPTNeoModel | |
>>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration | |
>>> configuration = GPTNeoConfig() | |
>>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration | |
>>> model = GPTNeoModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "vgpt_neo" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} | |
def __init__( | |
self, | |
vocab_size=50257, | |
additional_vocab_size=0, | |
max_position_embeddings=2048, | |
hidden_size=2048, | |
num_layers=24, | |
attention_types=[[["global", "local"], 12]], | |
num_heads=16, | |
intermediate_size=None, | |
window_size=256, | |
activation_function="gelu_new", | |
resid_dropout=0.0, | |
embed_dropout=0.0, | |
attention_dropout=0.0, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
alpha_initializer="ones", | |
alphas_initializer_range=0.0, | |
alpha_type="vector", | |
summary_type="cls_index", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
use_cache=True, | |
bos_token_id=50256, | |
eos_token_id=50256, | |
cross_layer_interval=1, | |
tie_word_embeddings=False, | |
freeze_text_layers=True, | |
freeze_lm_head=False, | |
freeze_vision_layers=True, | |
vision_model_name="google/vit-base-patch16-224", | |
vision_model_params="{}", | |
vision_embed_dim=768, | |
vision_image_size=224, | |
image_token_index=50257, | |
use_resampler=False, | |
resampler_n_latents=64, | |
resampler_depth=6, | |
resampler_n_heads=16, | |
resampler_head_dim=96, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.additional_vocab_size = additional_vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.intermediate_size = intermediate_size | |
self.window_size = window_size | |
self.activation_function = activation_function | |
self.resid_dropout = resid_dropout | |
self.embed_dropout = embed_dropout | |
self.attention_dropout = attention_dropout | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.alpha_initializer = alpha_initializer | |
self.alphas_initializer_range = alphas_initializer_range | |
self.alpha_type = alpha_type | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
self.use_cache = use_cache | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.cross_layer_interval = cross_layer_interval | |
self.freeze_vision_layers = freeze_vision_layers | |
self.vision_model_name = vision_model_name | |
self.vision_model_params = vision_model_params | |
self.tie_word_embeddings = tie_word_embeddings | |
self.freeze_text_layers = freeze_text_layers | |
self.freeze_lm_head = freeze_lm_head | |
self.image_token_index = image_token_index | |
self.attention_types = attention_types | |
self.attention_layers = self.expand_attention_types_params(attention_types) | |
self.vision_embed_dim = vision_embed_dim | |
self.vision_image_size = vision_image_size | |
# Resampler params | |
self.use_resampler = use_resampler | |
self.resampler_n_latents = resampler_n_latents | |
self.resampler_depth = resampler_depth | |
self.resampler_n_heads = resampler_n_heads | |
self.resampler_head_dim = resampler_head_dim | |
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
# updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
# of this object many attributes have default values and haven't yet been overridden. | |
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |
super().__init__( | |
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs | |
) | |
def check_compatibilities(self): | |
if self.tie_word_embeddings and (self.freeze_text_layers != self.freeze_lm_head): | |
raise ValueError( | |
"if `tie_word_embeddings` is True, then `freeze_lm_head` and `freeze_text_layers` must be equal." | |
) | |
vision_model_params = eval(self.vision_model_params) | |
config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params) | |
if hasattr(config, "vision_config"): | |
vision_config = config.vision_config | |
else: | |
vision_config = config | |
vision_embed_dim = vision_config.hidden_size | |
if self.vision_embed_dim != vision_embed_dim: | |
raise ValueError( | |
f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model" | |
f" ({vision_embed_dim})" | |
) | |
vision_image_size = vision_config.image_size | |
if self.vision_image_size != vision_image_size: | |
raise ValueError( | |
f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model" | |
f" ({vision_image_size})" | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
outputs = super(VGPTNeoConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs) | |
if isinstance(outputs, Tuple): | |
# When called with return_unused_kwargs=True, the first item will be the config | |
outputs[0].check_compatibilities() | |
else: | |
outputs.check_compatibilities() | |
return outputs | |
def expand_attention_types_params(attention_types): | |
attentions = [] | |
for item in attention_types: | |
for _ in range(item[1]): | |
attentions.extend(item[0]) | |
return attentions | |