Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -33,29 +33,45 @@ def model_inference(
|
|
33 |
if isinstance(images, Image.Image):
|
34 |
images = [images]
|
35 |
|
36 |
-
if isinstance(text, str):
|
37 |
-
text = "<image>" + text
|
38 |
-
text = [text]
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
assert decoding_strategy in [
|
43 |
"Greedy",
|
44 |
"Top P Sampling",
|
45 |
]
|
46 |
if decoding_strategy == "Greedy":
|
47 |
-
do_sample = False
|
48 |
elif decoding_strategy == "Top P Sampling":
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Generate
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
top_p=top_p),
|
56 |
-
#generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
57 |
-
generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
|
58 |
-
print("INPUT:", text, "|OUTPUT:", generated_texts)
|
59 |
return generated_texts[0]
|
60 |
|
61 |
|
|
|
33 |
if isinstance(images, Image.Image):
|
34 |
images = [images]
|
35 |
|
|
|
|
|
|
|
36 |
|
37 |
+
resulting_messages = [
|
38 |
+
{
|
39 |
+
"role": "user",
|
40 |
+
"content": [{"type": "image"}] + [
|
41 |
+
{"type": "text", "text": text}
|
42 |
+
]
|
43 |
+
}
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
48 |
+
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
49 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
50 |
+
|
51 |
+
generation_args = {
|
52 |
+
"max_new_tokens": max_new_tokens,
|
53 |
+
"repetition_penalty": repetition_penalty,
|
54 |
+
|
55 |
+
}
|
56 |
|
57 |
assert decoding_strategy in [
|
58 |
"Greedy",
|
59 |
"Top P Sampling",
|
60 |
]
|
61 |
if decoding_strategy == "Greedy":
|
62 |
+
generation_args["do_sample"] = False
|
63 |
elif decoding_strategy == "Top P Sampling":
|
64 |
+
generation_args["temperature"] = temperature
|
65 |
+
generation_args["do_sample"] = True
|
66 |
+
generation_args["top_p"] = top_p
|
67 |
+
|
68 |
+
|
69 |
+
generation_args.update(inputs)
|
70 |
|
71 |
# Generate
|
72 |
+
generated_ids = model.generate(**generation_args)
|
73 |
+
|
74 |
+
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
75 |
return generated_texts[0]
|
76 |
|
77 |
|