Spaces:
Running
Running
VictorSanh
commited on
Commit
·
82e8993
1
Parent(s):
1e870d6
fix generation parsing
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
|
|
19 |
|
20 |
@spaces.GPU(duration=180)
|
21 |
def model_inference(
|
22 |
-
image, text, decoding_strategy, temperature,
|
23 |
max_new_tokens, repetition_penalty, top_p
|
24 |
):
|
25 |
if text == "" and not image:
|
@@ -36,16 +36,16 @@ def model_inference(
|
|
36 |
]
|
37 |
}
|
38 |
]
|
39 |
-
|
40 |
-
|
41 |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
42 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
43 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
44 |
-
|
45 |
generation_args = {
|
46 |
"max_new_tokens": max_new_tokens,
|
47 |
"repetition_penalty": repetition_penalty,
|
48 |
-
|
49 |
}
|
50 |
|
51 |
assert decoding_strategy in [
|
@@ -59,20 +59,15 @@ def model_inference(
|
|
59 |
generation_args["do_sample"] = True
|
60 |
generation_args["top_p"] = top_p
|
61 |
|
62 |
-
|
63 |
generation_args.update(inputs)
|
64 |
|
65 |
# Generate
|
66 |
generated_ids = model.generate(**generation_args)
|
67 |
-
|
68 |
-
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
69 |
-
print(generated_texts)
|
70 |
-
pattern = r"Assistant: (.*)"
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
return result[:-1]
|
76 |
|
77 |
|
78 |
with gr.Blocks(fill_height=True) as demo:
|
@@ -87,7 +82,7 @@ with gr.Blocks(fill_height=True) as demo:
|
|
87 |
query_input = gr.Textbox(label="Prompt")
|
88 |
submit_btn = gr.Button("Submit")
|
89 |
output = gr.Textbox(label="Output")
|
90 |
-
|
91 |
with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
|
92 |
examples=[["./example_images/docvqa_example.png", "How many items are sold?", "Greedy", 0.4, 512, 1.2, 0.8],
|
93 |
["./example_images/example_images_travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", "Greedy", 0.4, 512, 1.2, 0.8],
|
@@ -95,7 +90,7 @@ with gr.Blocks(fill_height=True) as demo:
|
|
95 |
["./example_images/dummy_pdf.png", "How much percent is the order status?", "Greedy", 0.4, 512, 1.2, 0.8],
|
96 |
["./example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "Greedy", 0.4, 512, 1.2, 0.8],
|
97 |
["./example_images/s2w_example.png", "What is this UI about?", "Greedy", 0.4, 512, 1.2, 0.8]]
|
98 |
-
|
99 |
# Hyper-parameters for generation
|
100 |
max_new_tokens = gr.Slider(
|
101 |
minimum=8,
|
@@ -151,7 +146,7 @@ with gr.Blocks(fill_height=True) as demo:
|
|
151 |
inputs=decoding_strategy,
|
152 |
outputs=temperature,
|
153 |
)
|
154 |
-
|
155 |
decoding_strategy.change(
|
156 |
fn=lambda selection: gr.Slider(
|
157 |
visible=(
|
@@ -168,13 +163,13 @@ with gr.Blocks(fill_height=True) as demo:
|
|
168 |
)
|
169 |
gr.Examples(
|
170 |
examples = examples,
|
171 |
-
inputs=[image_input, query_input, decoding_strategy, temperature,
|
172 |
max_new_tokens, repetition_penalty, top_p],
|
173 |
outputs=output,
|
174 |
fn=model_inference
|
175 |
)
|
176 |
-
|
177 |
-
submit_btn.click(model_inference, inputs = [image_input, query_input, decoding_strategy, temperature,
|
178 |
max_new_tokens, repetition_penalty, top_p], outputs=output)
|
179 |
|
180 |
|
|
|
19 |
|
20 |
@spaces.GPU(duration=180)
|
21 |
def model_inference(
|
22 |
+
image, text, decoding_strategy, temperature,
|
23 |
max_new_tokens, repetition_penalty, top_p
|
24 |
):
|
25 |
if text == "" and not image:
|
|
|
36 |
]
|
37 |
}
|
38 |
]
|
39 |
+
|
40 |
+
|
41 |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
42 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
43 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
44 |
+
|
45 |
generation_args = {
|
46 |
"max_new_tokens": max_new_tokens,
|
47 |
"repetition_penalty": repetition_penalty,
|
48 |
+
|
49 |
}
|
50 |
|
51 |
assert decoding_strategy in [
|
|
|
59 |
generation_args["do_sample"] = True
|
60 |
generation_args["top_p"] = top_p
|
61 |
|
62 |
+
|
63 |
generation_args.update(inputs)
|
64 |
|
65 |
# Generate
|
66 |
generated_ids = model.generate(**generation_args)
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
|
69 |
+
print("INPUT:", prompt, "|OUTPUT:", generated_texts)
|
70 |
+
return generated_texts[0]
|
|
|
71 |
|
72 |
|
73 |
with gr.Blocks(fill_height=True) as demo:
|
|
|
82 |
query_input = gr.Textbox(label="Prompt")
|
83 |
submit_btn = gr.Button("Submit")
|
84 |
output = gr.Textbox(label="Output")
|
85 |
+
|
86 |
with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
|
87 |
examples=[["./example_images/docvqa_example.png", "How many items are sold?", "Greedy", 0.4, 512, 1.2, 0.8],
|
88 |
["./example_images/example_images_travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", "Greedy", 0.4, 512, 1.2, 0.8],
|
|
|
90 |
["./example_images/dummy_pdf.png", "How much percent is the order status?", "Greedy", 0.4, 512, 1.2, 0.8],
|
91 |
["./example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "Greedy", 0.4, 512, 1.2, 0.8],
|
92 |
["./example_images/s2w_example.png", "What is this UI about?", "Greedy", 0.4, 512, 1.2, 0.8]]
|
93 |
+
|
94 |
# Hyper-parameters for generation
|
95 |
max_new_tokens = gr.Slider(
|
96 |
minimum=8,
|
|
|
146 |
inputs=decoding_strategy,
|
147 |
outputs=temperature,
|
148 |
)
|
149 |
+
|
150 |
decoding_strategy.change(
|
151 |
fn=lambda selection: gr.Slider(
|
152 |
visible=(
|
|
|
163 |
)
|
164 |
gr.Examples(
|
165 |
examples = examples,
|
166 |
+
inputs=[image_input, query_input, decoding_strategy, temperature,
|
167 |
max_new_tokens, repetition_penalty, top_p],
|
168 |
outputs=output,
|
169 |
fn=model_inference
|
170 |
)
|
171 |
+
|
172 |
+
submit_btn.click(model_inference, inputs = [image_input, query_input, decoding_strategy, temperature,
|
173 |
max_new_tokens, repetition_penalty, top_p], outputs=output)
|
174 |
|
175 |
|