Spaces:
Running
Running
updates citation and wide
Browse files
app/astro.config.mjs
CHANGED
@@ -52,7 +52,8 @@ export default defineConfig({
|
|
52 |
rehypeKatex,
|
53 |
[rehypeCitation, {
|
54 |
bibliography: 'src/content/bibliography.bib',
|
55 |
-
linkCitations: true
|
|
|
56 |
}],
|
57 |
rehypeReferencesAndFootnotes,
|
58 |
rehypeRestoreAtInCode,
|
|
|
52 |
rehypeKatex,
|
53 |
[rehypeCitation, {
|
54 |
bibliography: 'src/content/bibliography.bib',
|
55 |
+
linkCitations: true,
|
56 |
+
csl: 'vancouver'
|
57 |
}],
|
58 |
rehypeReferencesAndFootnotes,
|
59 |
rehypeRestoreAtInCode,
|
app/src/components/Accordion.astro
CHANGED
@@ -89,16 +89,16 @@ const wrapperClass = ["accordion", className].filter(Boolean).join(" ");
|
|
89 |
}
|
90 |
|
91 |
.accordion__summary {
|
92 |
-
margin: 0;
|
93 |
list-style: none;
|
94 |
display: flex;
|
95 |
align-items: center;
|
96 |
-
justify-content:
|
97 |
gap: 4px;
|
98 |
-
padding:
|
99 |
cursor: pointer;
|
100 |
color: var(--text-color);
|
101 |
user-select: none;
|
|
|
102 |
}
|
103 |
|
104 |
/* Remove conditional padding to avoid jump on close */
|
@@ -116,7 +116,8 @@ const wrapperClass = ["accordion", className].filter(Boolean).join(" ");
|
|
116 |
}
|
117 |
|
118 |
.accordion__chevron {
|
119 |
-
|
|
|
120 |
transition: transform 220ms ease;
|
121 |
opacity: .85;
|
122 |
}
|
|
|
89 |
}
|
90 |
|
91 |
.accordion__summary {
|
|
|
92 |
list-style: none;
|
93 |
display: flex;
|
94 |
align-items: center;
|
95 |
+
justify-content: center;
|
96 |
gap: 4px;
|
97 |
+
padding: 4px;
|
98 |
cursor: pointer;
|
99 |
color: var(--text-color);
|
100 |
user-select: none;
|
101 |
+
position: relative;
|
102 |
}
|
103 |
|
104 |
/* Remove conditional padding to avoid jump on close */
|
|
|
116 |
}
|
117 |
|
118 |
.accordion__chevron {
|
119 |
+
position: absolute;
|
120 |
+
right: 8px;
|
121 |
transition: transform 220ms ease;
|
122 |
opacity: .85;
|
123 |
}
|
app/src/content/article.mdx
CHANGED
@@ -65,6 +65,7 @@ Projects like The Cauldron, LLaVa and Cambrian aim to provide such datasets, but
|
|
65 |
### Data Collection
|
66 |
We manually collect **over 180** image-text datasets from the recent literature and create new subsets in lacking domains.
|
67 |
|
|
|
68 |
<Accordion title="FineVision Subsets">
|
69 |
|Subset Name |Total Images|Total Samples|Total Turns|Total Question Tokens|Total Answer Tokens|Category |Source |
|
70 |
|--------------------------------------|------------|-------------|-----------|---------------------|-------------------|----------------------|------- |
|
@@ -255,6 +256,7 @@ We manually collect **over 180** image-text datasets from the recent literature
|
|
255 |
|text_OpenMathInstruct-2 |0 |1,000,000 |1,000,000 |74,905,850 |413,132,418 |Text-only |[@toshniwal_openmathinstruct-2_2024] |
|
256 |
|
257 |
</Accordion>
|
|
|
258 |
|
259 |
### Cleaning
|
260 |
After gathering all the sub-datasets, every turn is cleaned.
|
|
|
65 |
### Data Collection
|
66 |
We manually collect **over 180** image-text datasets from the recent literature and create new subsets in lacking domains.
|
67 |
|
68 |
+
<Wide>
|
69 |
<Accordion title="FineVision Subsets">
|
70 |
|Subset Name |Total Images|Total Samples|Total Turns|Total Question Tokens|Total Answer Tokens|Category |Source |
|
71 |
|--------------------------------------|------------|-------------|-----------|---------------------|-------------------|----------------------|------- |
|
|
|
256 |
|text_OpenMathInstruct-2 |0 |1,000,000 |1,000,000 |74,905,850 |413,132,418 |Text-only |[@toshniwal_openmathinstruct-2_2024] |
|
257 |
|
258 |
</Accordion>
|
259 |
+
</Wide>
|
260 |
|
261 |
### Cleaning
|
262 |
After gathering all the sub-datasets, every turn is cleaned.
|