Spaces:
Runtime error
Runtime error
read from s3
Browse files- .ipynb_checkpoints/test-checkpoint.ipynb +279 -0
- Makefile +43 -0
- app.py +77 -69
- data/{cc_filtered_text_examples_with_stats.json β commoncrawl_examples_with_stats.json} +0 -0
- data/enwiki_data_examples_with_stats.json +3 -0
- data/{s2orc_raw_examples_with_stats.json β s2orc_dedup_examples_with_stats.json} +0 -0
- test.ipynb +279 -0
.ipynb_checkpoints/test-checkpoint.ipynb
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "585da432",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Number of parquet files 30\n",
|
14 |
+
"Reading geclm-datasets/samples/c4/20230404_102105_00007_t8w9z_3085d601-45f1-443a-b50d-8eb4812dd227\n",
|
15 |
+
"Number of parquet files 30\n",
|
16 |
+
"Reading geclm-datasets/samples/bigcode_python_code/20230404_102116_00007_ajvns_4e5b2899-8640-4a4c-b0cd-758662178176\n",
|
17 |
+
"Number of parquet files 30\n",
|
18 |
+
"Reading geclm-datasets/samples/bigcode_python_github_issues/20230404_102127_00022_yv77i_982f928f-1431-4ea7-986d-c5c5cb0f4a3f\n",
|
19 |
+
"Number of parquet files 30\n",
|
20 |
+
"Reading geclm-datasets/samples/bigcode_python_jupyter_markdowned_clean_dedup/20230404_102137_00026_vwcg7_3167c932-87a1-4fec-ad01-215831d0bf6e\n",
|
21 |
+
"Number of parquet files 30\n",
|
22 |
+
"Reading geclm-datasets/samples/books3/20230404_102143_00027_t4kwf_198fc997-b871-4e4a-b88e-3776f1cf92fe\n",
|
23 |
+
"Number of parquet files 30\n",
|
24 |
+
"Reading geclm-datasets/samples/gutenberg_raw/20230404_102215_00007_x3ntt_30873bfe-c94c-439a-96e2-71165570dc99\n",
|
25 |
+
"Number of parquet files 30\n",
|
26 |
+
"Reading geclm-datasets/samples/reddit_threaded/20230404_102241_00049_xj4uk_d7612f5a-5107-46e1-b710-47e7db95a7e6\n",
|
27 |
+
"Number of parquet files 30\n",
|
28 |
+
"Reading geclm-datasets/samples/enwiki_data/20230404_102246_00007_ye63c_57166ca6-f0d2-40ef-8ae7-ed4bc7ecd28d\n",
|
29 |
+
"Number of parquet files 30\n",
|
30 |
+
"Reading geclm-datasets/samples/s2orc_dedup/20230404_102252_00080_6ce5q_330e23f7-1270-4a52-b277-af823baf1de6\n",
|
31 |
+
"Number of parquet files 30\n",
|
32 |
+
"Reading geclm-datasets/samples/stackexchange2/20230404_102308_00031_qvnh6_cec28e17-f163-4a04-9fbe-dc617d9ea03e\n",
|
33 |
+
"Number of parquet files 30\n",
|
34 |
+
"Reading geclm-datasets/samples/commoncrawl/20230404_124237_00026_sin5w_c2e65b68-2449-47fa-be8b-a6e6e83611d0\n",
|
35 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
36 |
+
"\n",
|
37 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"data": {
|
42 |
+
"text/html": [
|
43 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
44 |
+
],
|
45 |
+
"text/plain": [
|
46 |
+
"<IPython.core.display.HTML object>"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"metadata": {},
|
50 |
+
"output_type": "display_data"
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"import math\n",
|
55 |
+
"import os\n",
|
56 |
+
"import random\n",
|
57 |
+
"import uuid\n",
|
58 |
+
"from datetime import datetime\n",
|
59 |
+
"\n",
|
60 |
+
"import gradio as gr\n",
|
61 |
+
"import jsonlines\n",
|
62 |
+
"import pyarrow as pa\n",
|
63 |
+
"import s3fs\n",
|
64 |
+
"from datasets import Dataset\n",
|
65 |
+
"from huggingface_hub import HfApi\n",
|
66 |
+
"\n",
|
67 |
+
"S3 = s3fs.S3FileSystem(anon=False, key=os.getenv(\"AWS_ACCESS_KEY_ID\"), secret=os.getenv(\"AWS_SECRET_ACCESS_KEY\"))\n",
|
68 |
+
"\n",
|
69 |
+
"DEFAULT_SHUFFLE_BUFFER_SIZE_RATIO = 5\n",
|
70 |
+
"BASE_S3_DIR = \"s3://geclm-datasets/samples/\"\n",
|
71 |
+
"\n",
|
72 |
+
"DATASETS = [\n",
|
73 |
+
" \"c4\",\n",
|
74 |
+
" \"bigcode_python_code\",\n",
|
75 |
+
" \"bigcode_python_github_issues\",\n",
|
76 |
+
" \"bigcode_python_jupyter_markdowned_clean_dedup\",\n",
|
77 |
+
" \"books3\",\n",
|
78 |
+
" \"gutenberg_raw\",\n",
|
79 |
+
" \"reddit_threaded\",\n",
|
80 |
+
" \"enwiki_data\",\n",
|
81 |
+
" \"s2orc_dedup\",\n",
|
82 |
+
" \"stackexchange2\",\n",
|
83 |
+
" \"commoncrawl\",\n",
|
84 |
+
"]\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"def get_parquet_lines(dataset, sample_size=100):\n",
|
88 |
+
" s3_paths = S3.glob(BASE_S3_DIR + dataset + \"/*\")\n",
|
89 |
+
"\n",
|
90 |
+
" if len(s3_paths) == 0:\n",
|
91 |
+
" raise FileNotFoundError(f\"Nothing found at {path}\")\n",
|
92 |
+
"\n",
|
93 |
+
" print(\"Number of parquet files\", len(s3_paths))\n",
|
94 |
+
" s3_path = random.choice(s3_paths)\n",
|
95 |
+
" print(\"Reading\", s3_path)\n",
|
96 |
+
" lines = []\n",
|
97 |
+
"\n",
|
98 |
+
" with S3.open(s3_path) as f:\n",
|
99 |
+
" pf = pa.parquet.ParquetFile(f)\n",
|
100 |
+
" for ix_row_group in range(pf.metadata.num_row_groups):\n",
|
101 |
+
" # We load dataset by row group - 1000 rows at a time\n",
|
102 |
+
" # using open_input_stream would return bytes per bytes not row per row\n",
|
103 |
+
" table = pf.read_row_group(ix_row_group)\n",
|
104 |
+
" lines.extend(table.to_pylist())\n",
|
105 |
+
"\n",
|
106 |
+
" random.shuffle(lines)\n",
|
107 |
+
" return lines[:sample_size]\n",
|
108 |
+
"\n",
|
109 |
+
"\n",
|
110 |
+
"def get_local_lines(dataset):\n",
|
111 |
+
" lines = []\n",
|
112 |
+
" with jsonlines.open(\"data/{}_examples_with_stats.json\".format(dataset), \"r\") as f:\n",
|
113 |
+
" for line in f:\n",
|
114 |
+
" lines.append(line)\n",
|
115 |
+
" return lines\n",
|
116 |
+
"\n",
|
117 |
+
"\n",
|
118 |
+
"def line_generator(lines_dict, dataset):\n",
|
119 |
+
" for line in lines_dict[dataset]:\n",
|
120 |
+
" yield line\n",
|
121 |
+
"\n",
|
122 |
+
"\n",
|
123 |
+
"# Parallelize the below\n",
|
124 |
+
"local_lines = {dataset: get_local_lines(dataset) for dataset in DATASETS}\n",
|
125 |
+
"s3_lines = {dataset: get_parquet_lines(dataset) for dataset in DATASETS}\n",
|
126 |
+
"\n",
|
127 |
+
"line_generators_local = {dataset: line_generator(local_lines, dataset) for dataset in DATASETS}\n",
|
128 |
+
"line_generators_s3 = {dataset: line_generator(s3_lines, dataset) for dataset in DATASETS}\n",
|
129 |
+
"\n",
|
130 |
+
"\n",
|
131 |
+
"def send_report(sample, dataset, reason, annotator, campaign):\n",
|
132 |
+
" text = sample[\"text\"]\n",
|
133 |
+
" sample.pop(\"text\")\n",
|
134 |
+
"\n",
|
135 |
+
" sample_id = \"\"\n",
|
136 |
+
" if \"id\" not in sample:\n",
|
137 |
+
" if \"title\" in sample:\n",
|
138 |
+
" sample_id = sample[\"title\"]\n",
|
139 |
+
" else:\n",
|
140 |
+
" sample_id = sample[\"id\"]\n",
|
141 |
+
"\n",
|
142 |
+
" with jsonlines.open(\"report.jsonl\", \"w\") as f:\n",
|
143 |
+
" f.write(\n",
|
144 |
+
" {\n",
|
145 |
+
" \"dataset\": dataset,\n",
|
146 |
+
" \"docid\": sample_id,\n",
|
147 |
+
" \"text\": text,\n",
|
148 |
+
" \"metadata\": sample,\n",
|
149 |
+
" \"reason\": reason,\n",
|
150 |
+
" \"annotator\": annotator,\n",
|
151 |
+
" \"campaign\": campaign,\n",
|
152 |
+
" \"timestamp\": str(datetime.now()),\n",
|
153 |
+
" }\n",
|
154 |
+
" )\n",
|
155 |
+
"\n",
|
156 |
+
" api = HfApi()\n",
|
157 |
+
" api.upload_file(\n",
|
158 |
+
" path_or_fileobj=\"report.jsonl\",\n",
|
159 |
+
" path_in_repo=\"report-{}.jsonl\".format(uuid.uuid4()),\n",
|
160 |
+
" repo_id=\"HuggingFaceGECLM/data_feedback\",\n",
|
161 |
+
" repo_type=\"dataset\",\n",
|
162 |
+
" token=os.environ.get(\"geclm_token\"),\n",
|
163 |
+
" )\n",
|
164 |
+
"\n",
|
165 |
+
"\n",
|
166 |
+
"description = \"\"\"\n",
|
167 |
+
"GecLM annotations. All annotations are recorded in the [data_feedback](https://huggingface.co/datasets/HuggingFaceGECLM/data_feedback) dataset.\n",
|
168 |
+
"\"\"\"\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
+
"if __name__ == \"__main__\":\n",
|
172 |
+
" demo = gr.Blocks()\n",
|
173 |
+
"\n",
|
174 |
+
" with demo:\n",
|
175 |
+
" current_sample_state = gr.State(dict())\n",
|
176 |
+
"\n",
|
177 |
+
" description = gr.Markdown(value=description)\n",
|
178 |
+
" with gr.Row():\n",
|
179 |
+
" annotator = gr.Textbox(\n",
|
180 |
+
" lines=1,\n",
|
181 |
+
" max_lines=1,\n",
|
182 |
+
" placeholder=\"Optionally provide your name here if you'd like it to be recorded.\",\n",
|
183 |
+
" label=\"Annotator\",\n",
|
184 |
+
" )\n",
|
185 |
+
" campaign = gr.Textbox(\n",
|
186 |
+
" lines=1,\n",
|
187 |
+
" max_lines=1,\n",
|
188 |
+
" placeholder=\"Optionally provide the name of the annotation campagin for ease of filtering the reports.\",\n",
|
189 |
+
" label=\"Annotation campaign\",\n",
|
190 |
+
" )\n",
|
191 |
+
" with gr.Row():\n",
|
192 |
+
" dataset = gr.Dropdown(\n",
|
193 |
+
" choices=DATASETS,\n",
|
194 |
+
" value=\"Pick a dataset below\",\n",
|
195 |
+
" label=\"Dataset\",\n",
|
196 |
+
" )\n",
|
197 |
+
" with gr.Row():\n",
|
198 |
+
" reason_txt = gr.Textbox(\n",
|
199 |
+
" label=\"Flagging reason\",\n",
|
200 |
+
" placeholder=\"Provide the reason for flagging if you think the sample is bad.\",\n",
|
201 |
+
" visible=False,\n",
|
202 |
+
" )\n",
|
203 |
+
" with gr.Row():\n",
|
204 |
+
" bad_btn = gr.Button(\"Bad β\", visible=False)\n",
|
205 |
+
" good_btn = gr.Button(\"Next β
\", visible=False)\n",
|
206 |
+
" with gr.Row():\n",
|
207 |
+
" text = gr.Textbox(visible=False, label=\"Datapoint\", lines=500)\n",
|
208 |
+
"\n",
|
209 |
+
" def next_line(dataset):\n",
|
210 |
+
" next_line = next(line_generators_s3[dataset])\n",
|
211 |
+
"\n",
|
212 |
+
" text_col = \"text\"\n",
|
213 |
+
" if text_col not in next_line:\n",
|
214 |
+
" text_col = \"content\"\n",
|
215 |
+
" return [\n",
|
216 |
+
" gr.update(value=next_line[text_col], visible=True),\n",
|
217 |
+
" next_line,\n",
|
218 |
+
" gr.update(visible=True),\n",
|
219 |
+
" gr.update(visible=True),\n",
|
220 |
+
" gr.update(visible=True),\n",
|
221 |
+
" ]\n",
|
222 |
+
"\n",
|
223 |
+
" def bad_line(current_sample, dataset, reason, annotator, campaign):\n",
|
224 |
+
" send_report(current_sample, dataset, reason, annotator, campaign)\n",
|
225 |
+
" next_line = next(line_generators_s3[dataset])\n",
|
226 |
+
" text_col = \"text\"\n",
|
227 |
+
" if text_col not in next_line:\n",
|
228 |
+
" text_col = \"content\"\n",
|
229 |
+
" return [\n",
|
230 |
+
" next_line[text_col],\n",
|
231 |
+
" gr.update(\n",
|
232 |
+
" value=\"\",\n",
|
233 |
+
" placeholder=\"Provide the reason for flagging if you think the sample is bad.\",\n",
|
234 |
+
" ),\n",
|
235 |
+
" next_line,\n",
|
236 |
+
" ]\n",
|
237 |
+
"\n",
|
238 |
+
" good_btn.click(\n",
|
239 |
+
" next_line,\n",
|
240 |
+
" inputs=dataset,\n",
|
241 |
+
" outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],\n",
|
242 |
+
" )\n",
|
243 |
+
" dataset.change(\n",
|
244 |
+
" next_line,\n",
|
245 |
+
" inputs=dataset,\n",
|
246 |
+
" outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],\n",
|
247 |
+
" )\n",
|
248 |
+
" bad_btn.click(\n",
|
249 |
+
" bad_line,\n",
|
250 |
+
" inputs=[current_sample_state, dataset, reason_txt, annotator, campaign],\n",
|
251 |
+
" outputs=[text, reason_txt, current_sample_state],\n",
|
252 |
+
" )\n",
|
253 |
+
"\n",
|
254 |
+
" demo.launch(enable_queue=False, debug=True)\n"
|
255 |
+
]
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"metadata": {
|
259 |
+
"kernelspec": {
|
260 |
+
"display_name": "Python 3 (ipykernel)",
|
261 |
+
"language": "python",
|
262 |
+
"name": "python3"
|
263 |
+
},
|
264 |
+
"language_info": {
|
265 |
+
"codemirror_mode": {
|
266 |
+
"name": "ipython",
|
267 |
+
"version": 3
|
268 |
+
},
|
269 |
+
"file_extension": ".py",
|
270 |
+
"mimetype": "text/x-python",
|
271 |
+
"name": "python",
|
272 |
+
"nbconvert_exporter": "python",
|
273 |
+
"pygments_lexer": "ipython3",
|
274 |
+
"version": "3.10.9"
|
275 |
+
}
|
276 |
+
},
|
277 |
+
"nbformat": 4,
|
278 |
+
"nbformat_minor": 5
|
279 |
+
}
|
Makefile
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: style quality
|
2 |
+
|
3 |
+
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
|
4 |
+
export PYTHONPATH = src
|
5 |
+
|
6 |
+
# For later, when we have correct path - and we will likely have to ignore venv folders.
|
7 |
+
check_dirs := examples tests src utils
|
8 |
+
|
9 |
+
style:
|
10 |
+
python -m black --line-length 119 --target-version py39 .
|
11 |
+
python -m isort .
|
12 |
+
|
13 |
+
quality:
|
14 |
+
python -m black --check --line-length 119 --target-version py39 .
|
15 |
+
python -m isort --check-only .
|
16 |
+
python -m flake8 --max-line-length 119 .
|
17 |
+
|
18 |
+
# Release stuff
|
19 |
+
pre-release:
|
20 |
+
python utils/release.py
|
21 |
+
|
22 |
+
pre-patch:
|
23 |
+
python utils/release.py --patch
|
24 |
+
|
25 |
+
post-release:
|
26 |
+
python utils/release.py --post_release
|
27 |
+
|
28 |
+
post-patch:
|
29 |
+
python utils/release.py --post_release --patch
|
30 |
+
|
31 |
+
#wheels:
|
32 |
+
# python setup.py bdist_wheel && python setup.py sdist
|
33 |
+
#
|
34 |
+
#wheels_clean:
|
35 |
+
# rm -rf build && rm -rf dist
|
36 |
+
#
|
37 |
+
#pypi_upload:
|
38 |
+
# python -m pip install twine
|
39 |
+
# twine upload dist/* -r pypi
|
40 |
+
#
|
41 |
+
#pypi_test_upload:
|
42 |
+
# python -m pip install twine
|
43 |
+
# twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
|
app.py
CHANGED
@@ -1,79 +1,78 @@
|
|
1 |
-
import
|
2 |
-
import jsonlines
|
3 |
import os
|
|
|
4 |
import uuid
|
5 |
-
|
6 |
-
|
7 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from huggingface_hub import HfApi
|
9 |
-
from pprint import pprint
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
"bigcode_python_code",
|
16 |
"bigcode_python_github_issues",
|
17 |
-
"
|
18 |
"books3",
|
19 |
-
"
|
20 |
-
"s2orc_raw",
|
21 |
"reddit_threaded",
|
22 |
-
"
|
|
|
|
|
|
|
23 |
]
|
24 |
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
for line in f:
|
69 |
-
yield line
|
70 |
-
if dataset == "cc_filtered_text":
|
71 |
-
with jsonlines.open("data/reddit_threaded_examples_with_stats.json", "r") as f:
|
72 |
-
for line in f:
|
73 |
-
yield line
|
74 |
-
|
75 |
-
|
76 |
-
line_generators = {dataset: line_generator(dataset) for dataset in datasets}
|
77 |
|
78 |
|
79 |
def send_report(sample, dataset, reason, annotator, campaign):
|
@@ -138,7 +137,9 @@ if __name__ == "__main__":
|
|
138 |
)
|
139 |
with gr.Row():
|
140 |
dataset = gr.Dropdown(
|
141 |
-
choices=
|
|
|
|
|
142 |
)
|
143 |
with gr.Row():
|
144 |
reason_txt = gr.Textbox(
|
@@ -150,12 +151,16 @@ if __name__ == "__main__":
|
|
150 |
bad_btn = gr.Button("Bad β", visible=False)
|
151 |
good_btn = gr.Button("Next β
", visible=False)
|
152 |
with gr.Row():
|
153 |
-
text = gr.
|
154 |
|
155 |
def next_line(dataset):
|
156 |
-
next_line = next(
|
|
|
|
|
|
|
|
|
157 |
return [
|
158 |
-
gr.update(value=
|
159 |
next_line,
|
160 |
gr.update(visible=True),
|
161 |
gr.update(visible=True),
|
@@ -164,9 +169,12 @@ if __name__ == "__main__":
|
|
164 |
|
165 |
def bad_line(current_sample, dataset, reason, annotator, campaign):
|
166 |
send_report(current_sample, dataset, reason, annotator, campaign)
|
167 |
-
next_line = next(
|
|
|
|
|
|
|
168 |
return [
|
169 |
-
|
170 |
gr.update(
|
171 |
value="",
|
172 |
placeholder="Provide the reason for flagging if you think the sample is bad.",
|
|
|
1 |
+
import math
|
|
|
2 |
import os
|
3 |
+
import random
|
4 |
import uuid
|
|
|
|
|
5 |
from datetime import datetime
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import jsonlines
|
9 |
+
import pyarrow as pa
|
10 |
+
import s3fs
|
11 |
+
from datasets import Dataset
|
12 |
from huggingface_hub import HfApi
|
|
|
13 |
|
14 |
+
S3 = s3fs.S3FileSystem(anon=False, key=os.getenv("AWS_ACCESS_KEY_ID"), secret=os.getenv("AWS_SECRET_ACCESS_KEY"))
|
15 |
|
16 |
+
DEFAULT_SHUFFLE_BUFFER_SIZE_RATIO = 5
|
17 |
+
BASE_S3_DIR = "s3://geclm-datasets/samples/"
|
18 |
+
|
19 |
+
DATASETS = [
|
20 |
+
"c4",
|
21 |
"bigcode_python_code",
|
22 |
"bigcode_python_github_issues",
|
23 |
+
"bigcode_python_jupyter_markdowned_clean_dedup",
|
24 |
"books3",
|
25 |
+
"gutenberg_raw",
|
|
|
26 |
"reddit_threaded",
|
27 |
+
"enwiki_data",
|
28 |
+
"s2orc_dedup",
|
29 |
+
"stackexchange2",
|
30 |
+
"commoncrawl",
|
31 |
]
|
32 |
|
33 |
|
34 |
+
def get_parquet_lines(dataset, sample_size=100):
|
35 |
+
s3_paths = S3.glob(BASE_S3_DIR + dataset + "/*")
|
36 |
+
|
37 |
+
if len(s3_paths) == 0:
|
38 |
+
raise FileNotFoundError(f"Nothing found at {path}")
|
39 |
+
|
40 |
+
print("Number of parquet files", len(s3_paths))
|
41 |
+
s3_path = random.choice(s3_paths)
|
42 |
+
print("Reading", s3_path)
|
43 |
+
lines = []
|
44 |
+
|
45 |
+
with S3.open(s3_path) as f:
|
46 |
+
pf = pa.parquet.ParquetFile(f)
|
47 |
+
for ix_row_group in range(pf.metadata.num_row_groups):
|
48 |
+
# We load dataset by row group - 1000 rows at a time
|
49 |
+
# using open_input_stream would return bytes per bytes not row per row
|
50 |
+
table = pf.read_row_group(ix_row_group)
|
51 |
+
lines.extend(table.to_pylist())
|
52 |
+
|
53 |
+
random.shuffle(lines)
|
54 |
+
return lines[:sample_size]
|
55 |
+
|
56 |
+
|
57 |
+
def get_local_lines(dataset):
|
58 |
+
lines = []
|
59 |
+
with jsonlines.open("data/{}_examples_with_stats.json".format(dataset), "r") as f:
|
60 |
+
for line in f:
|
61 |
+
lines.append(line)
|
62 |
+
return lines
|
63 |
+
|
64 |
+
|
65 |
+
def line_generator(lines_dict, dataset):
|
66 |
+
for line in lines_dict[dataset]:
|
67 |
+
yield line
|
68 |
+
|
69 |
+
|
70 |
+
# Parallelize the below
|
71 |
+
local_lines = {dataset: get_local_lines(dataset) for dataset in DATASETS}
|
72 |
+
s3_lines = {dataset: get_parquet_lines(dataset) for dataset in DATASETS}
|
73 |
+
|
74 |
+
line_generators_local = {dataset: line_generator(local_lines, dataset) for dataset in DATASETS}
|
75 |
+
line_generators_s3 = {dataset: line_generator(s3_lines, dataset) for dataset in DATASETS}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
def send_report(sample, dataset, reason, annotator, campaign):
|
|
|
137 |
)
|
138 |
with gr.Row():
|
139 |
dataset = gr.Dropdown(
|
140 |
+
choices=DATASETS,
|
141 |
+
value="Pick a dataset below",
|
142 |
+
label="Dataset",
|
143 |
)
|
144 |
with gr.Row():
|
145 |
reason_txt = gr.Textbox(
|
|
|
151 |
bad_btn = gr.Button("Bad β", visible=False)
|
152 |
good_btn = gr.Button("Next β
", visible=False)
|
153 |
with gr.Row():
|
154 |
+
text = gr.Textbox(visible=False, label="Datapoint", lines=500)
|
155 |
|
156 |
def next_line(dataset):
|
157 |
+
next_line = next(line_generators_s3[dataset])
|
158 |
+
|
159 |
+
text_col = "text"
|
160 |
+
if text_col not in next_line:
|
161 |
+
text_col = "content"
|
162 |
return [
|
163 |
+
gr.update(value=next_line[text_col], visible=True),
|
164 |
next_line,
|
165 |
gr.update(visible=True),
|
166 |
gr.update(visible=True),
|
|
|
169 |
|
170 |
def bad_line(current_sample, dataset, reason, annotator, campaign):
|
171 |
send_report(current_sample, dataset, reason, annotator, campaign)
|
172 |
+
next_line = next(line_generators_s3[dataset])
|
173 |
+
text_col = "text"
|
174 |
+
if text_col not in next_line:
|
175 |
+
text_col = "content"
|
176 |
return [
|
177 |
+
next_line[text_col],
|
178 |
gr.update(
|
179 |
value="",
|
180 |
placeholder="Provide the reason for flagging if you think the sample is bad.",
|
data/{cc_filtered_text_examples_with_stats.json β commoncrawl_examples_with_stats.json}
RENAMED
File without changes
|
data/enwiki_data_examples_with_stats.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356
|
3 |
+
size 3
|
data/{s2orc_raw_examples_with_stats.json β s2orc_dedup_examples_with_stats.json}
RENAMED
File without changes
|
test.ipynb
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "585da432",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Number of parquet files 30\n",
|
14 |
+
"Reading geclm-datasets/samples/c4/20230404_102105_00007_t8w9z_3085d601-45f1-443a-b50d-8eb4812dd227\n",
|
15 |
+
"Number of parquet files 30\n",
|
16 |
+
"Reading geclm-datasets/samples/bigcode_python_code/20230404_102116_00007_ajvns_4e5b2899-8640-4a4c-b0cd-758662178176\n",
|
17 |
+
"Number of parquet files 30\n",
|
18 |
+
"Reading geclm-datasets/samples/bigcode_python_github_issues/20230404_102127_00022_yv77i_982f928f-1431-4ea7-986d-c5c5cb0f4a3f\n",
|
19 |
+
"Number of parquet files 30\n",
|
20 |
+
"Reading geclm-datasets/samples/bigcode_python_jupyter_markdowned_clean_dedup/20230404_102137_00026_vwcg7_3167c932-87a1-4fec-ad01-215831d0bf6e\n",
|
21 |
+
"Number of parquet files 30\n",
|
22 |
+
"Reading geclm-datasets/samples/books3/20230404_102143_00027_t4kwf_198fc997-b871-4e4a-b88e-3776f1cf92fe\n",
|
23 |
+
"Number of parquet files 30\n",
|
24 |
+
"Reading geclm-datasets/samples/gutenberg_raw/20230404_102215_00007_x3ntt_30873bfe-c94c-439a-96e2-71165570dc99\n",
|
25 |
+
"Number of parquet files 30\n",
|
26 |
+
"Reading geclm-datasets/samples/reddit_threaded/20230404_102241_00049_xj4uk_d7612f5a-5107-46e1-b710-47e7db95a7e6\n",
|
27 |
+
"Number of parquet files 30\n",
|
28 |
+
"Reading geclm-datasets/samples/enwiki_data/20230404_102246_00007_ye63c_57166ca6-f0d2-40ef-8ae7-ed4bc7ecd28d\n",
|
29 |
+
"Number of parquet files 30\n",
|
30 |
+
"Reading geclm-datasets/samples/s2orc_dedup/20230404_102252_00080_6ce5q_330e23f7-1270-4a52-b277-af823baf1de6\n",
|
31 |
+
"Number of parquet files 30\n",
|
32 |
+
"Reading geclm-datasets/samples/stackexchange2/20230404_102308_00031_qvnh6_cec28e17-f163-4a04-9fbe-dc617d9ea03e\n",
|
33 |
+
"Number of parquet files 30\n",
|
34 |
+
"Reading geclm-datasets/samples/commoncrawl/20230404_124237_00026_sin5w_c2e65b68-2449-47fa-be8b-a6e6e83611d0\n",
|
35 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
36 |
+
"\n",
|
37 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"data": {
|
42 |
+
"text/html": [
|
43 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
44 |
+
],
|
45 |
+
"text/plain": [
|
46 |
+
"<IPython.core.display.HTML object>"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"metadata": {},
|
50 |
+
"output_type": "display_data"
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"import math\n",
|
55 |
+
"import os\n",
|
56 |
+
"import random\n",
|
57 |
+
"import uuid\n",
|
58 |
+
"from datetime import datetime\n",
|
59 |
+
"\n",
|
60 |
+
"import gradio as gr\n",
|
61 |
+
"import jsonlines\n",
|
62 |
+
"import pyarrow as pa\n",
|
63 |
+
"import s3fs\n",
|
64 |
+
"from datasets import Dataset\n",
|
65 |
+
"from huggingface_hub import HfApi\n",
|
66 |
+
"\n",
|
67 |
+
"S3 = s3fs.S3FileSystem(anon=False, key=os.getenv(\"AWS_ACCESS_KEY_ID\"), secret=os.getenv(\"AWS_SECRET_ACCESS_KEY\"))\n",
|
68 |
+
"\n",
|
69 |
+
"DEFAULT_SHUFFLE_BUFFER_SIZE_RATIO = 5\n",
|
70 |
+
"BASE_S3_DIR = \"s3://geclm-datasets/samples/\"\n",
|
71 |
+
"\n",
|
72 |
+
"DATASETS = [\n",
|
73 |
+
" \"c4\",\n",
|
74 |
+
" \"bigcode_python_code\",\n",
|
75 |
+
" \"bigcode_python_github_issues\",\n",
|
76 |
+
" \"bigcode_python_jupyter_markdowned_clean_dedup\",\n",
|
77 |
+
" \"books3\",\n",
|
78 |
+
" \"gutenberg_raw\",\n",
|
79 |
+
" \"reddit_threaded\",\n",
|
80 |
+
" \"enwiki_data\",\n",
|
81 |
+
" \"s2orc_dedup\",\n",
|
82 |
+
" \"stackexchange2\",\n",
|
83 |
+
" \"commoncrawl\",\n",
|
84 |
+
"]\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"def get_parquet_lines(dataset, sample_size=100):\n",
|
88 |
+
" s3_paths = S3.glob(BASE_S3_DIR + dataset + \"/*\")\n",
|
89 |
+
"\n",
|
90 |
+
" if len(s3_paths) == 0:\n",
|
91 |
+
" raise FileNotFoundError(f\"Nothing found at {path}\")\n",
|
92 |
+
"\n",
|
93 |
+
" print(\"Number of parquet files\", len(s3_paths))\n",
|
94 |
+
" s3_path = random.choice(s3_paths)\n",
|
95 |
+
" print(\"Reading\", s3_path)\n",
|
96 |
+
" lines = []\n",
|
97 |
+
"\n",
|
98 |
+
" with S3.open(s3_path) as f:\n",
|
99 |
+
" pf = pa.parquet.ParquetFile(f)\n",
|
100 |
+
" for ix_row_group in range(pf.metadata.num_row_groups):\n",
|
101 |
+
" # We load dataset by row group - 1000 rows at a time\n",
|
102 |
+
" # using open_input_stream would return bytes per bytes not row per row\n",
|
103 |
+
" table = pf.read_row_group(ix_row_group)\n",
|
104 |
+
" lines.extend(table.to_pylist())\n",
|
105 |
+
"\n",
|
106 |
+
" random.shuffle(lines)\n",
|
107 |
+
" return lines[:sample_size]\n",
|
108 |
+
"\n",
|
109 |
+
"\n",
|
110 |
+
"def get_local_lines(dataset):\n",
|
111 |
+
" lines = []\n",
|
112 |
+
" with jsonlines.open(\"data/{}_examples_with_stats.json\".format(dataset), \"r\") as f:\n",
|
113 |
+
" for line in f:\n",
|
114 |
+
" lines.append(line)\n",
|
115 |
+
" return lines\n",
|
116 |
+
"\n",
|
117 |
+
"\n",
|
118 |
+
"def line_generator(lines_dict, dataset):\n",
|
119 |
+
" for line in lines_dict[dataset]:\n",
|
120 |
+
" yield line\n",
|
121 |
+
"\n",
|
122 |
+
"\n",
|
123 |
+
"# Parallelize the below\n",
|
124 |
+
"local_lines = {dataset: get_local_lines(dataset) for dataset in DATASETS}\n",
|
125 |
+
"s3_lines = {dataset: get_parquet_lines(dataset) for dataset in DATASETS}\n",
|
126 |
+
"\n",
|
127 |
+
"line_generators_local = {dataset: line_generator(local_lines, dataset) for dataset in DATASETS}\n",
|
128 |
+
"line_generators_s3 = {dataset: line_generator(s3_lines, dataset) for dataset in DATASETS}\n",
|
129 |
+
"\n",
|
130 |
+
"\n",
|
131 |
+
"def send_report(sample, dataset, reason, annotator, campaign):\n",
|
132 |
+
" text = sample[\"text\"]\n",
|
133 |
+
" sample.pop(\"text\")\n",
|
134 |
+
"\n",
|
135 |
+
" sample_id = \"\"\n",
|
136 |
+
" if \"id\" not in sample:\n",
|
137 |
+
" if \"title\" in sample:\n",
|
138 |
+
" sample_id = sample[\"title\"]\n",
|
139 |
+
" else:\n",
|
140 |
+
" sample_id = sample[\"id\"]\n",
|
141 |
+
"\n",
|
142 |
+
" with jsonlines.open(\"report.jsonl\", \"w\") as f:\n",
|
143 |
+
" f.write(\n",
|
144 |
+
" {\n",
|
145 |
+
" \"dataset\": dataset,\n",
|
146 |
+
" \"docid\": sample_id,\n",
|
147 |
+
" \"text\": text,\n",
|
148 |
+
" \"metadata\": sample,\n",
|
149 |
+
" \"reason\": reason,\n",
|
150 |
+
" \"annotator\": annotator,\n",
|
151 |
+
" \"campaign\": campaign,\n",
|
152 |
+
" \"timestamp\": str(datetime.now()),\n",
|
153 |
+
" }\n",
|
154 |
+
" )\n",
|
155 |
+
"\n",
|
156 |
+
" api = HfApi()\n",
|
157 |
+
" api.upload_file(\n",
|
158 |
+
" path_or_fileobj=\"report.jsonl\",\n",
|
159 |
+
" path_in_repo=\"report-{}.jsonl\".format(uuid.uuid4()),\n",
|
160 |
+
" repo_id=\"HuggingFaceGECLM/data_feedback\",\n",
|
161 |
+
" repo_type=\"dataset\",\n",
|
162 |
+
" token=os.environ.get(\"geclm_token\"),\n",
|
163 |
+
" )\n",
|
164 |
+
"\n",
|
165 |
+
"\n",
|
166 |
+
"description = \"\"\"\n",
|
167 |
+
"GecLM annotations. All annotations are recorded in the [data_feedback](https://huggingface.co/datasets/HuggingFaceGECLM/data_feedback) dataset.\n",
|
168 |
+
"\"\"\"\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
+
"if __name__ == \"__main__\":\n",
|
172 |
+
" demo = gr.Blocks()\n",
|
173 |
+
"\n",
|
174 |
+
" with demo:\n",
|
175 |
+
" current_sample_state = gr.State(dict())\n",
|
176 |
+
"\n",
|
177 |
+
" description = gr.Markdown(value=description)\n",
|
178 |
+
" with gr.Row():\n",
|
179 |
+
" annotator = gr.Textbox(\n",
|
180 |
+
" lines=1,\n",
|
181 |
+
" max_lines=1,\n",
|
182 |
+
" placeholder=\"Optionally provide your name here if you'd like it to be recorded.\",\n",
|
183 |
+
" label=\"Annotator\",\n",
|
184 |
+
" )\n",
|
185 |
+
" campaign = gr.Textbox(\n",
|
186 |
+
" lines=1,\n",
|
187 |
+
" max_lines=1,\n",
|
188 |
+
" placeholder=\"Optionally provide the name of the annotation campagin for ease of filtering the reports.\",\n",
|
189 |
+
" label=\"Annotation campaign\",\n",
|
190 |
+
" )\n",
|
191 |
+
" with gr.Row():\n",
|
192 |
+
" dataset = gr.Dropdown(\n",
|
193 |
+
" choices=DATASETS,\n",
|
194 |
+
" value=\"Pick a dataset below\",\n",
|
195 |
+
" label=\"Dataset\",\n",
|
196 |
+
" )\n",
|
197 |
+
" with gr.Row():\n",
|
198 |
+
" reason_txt = gr.Textbox(\n",
|
199 |
+
" label=\"Flagging reason\",\n",
|
200 |
+
" placeholder=\"Provide the reason for flagging if you think the sample is bad.\",\n",
|
201 |
+
" visible=False,\n",
|
202 |
+
" )\n",
|
203 |
+
" with gr.Row():\n",
|
204 |
+
" bad_btn = gr.Button(\"Bad β\", visible=False)\n",
|
205 |
+
" good_btn = gr.Button(\"Next β
\", visible=False)\n",
|
206 |
+
" with gr.Row():\n",
|
207 |
+
" text = gr.Textbox(visible=False, label=\"Datapoint\", lines=500)\n",
|
208 |
+
"\n",
|
209 |
+
" def next_line(dataset):\n",
|
210 |
+
" next_line = next(line_generators_s3[dataset])\n",
|
211 |
+
"\n",
|
212 |
+
" text_col = \"text\"\n",
|
213 |
+
" if text_col not in next_line:\n",
|
214 |
+
" text_col = \"content\"\n",
|
215 |
+
" return [\n",
|
216 |
+
" gr.update(value=next_line[text_col], visible=True),\n",
|
217 |
+
" next_line,\n",
|
218 |
+
" gr.update(visible=True),\n",
|
219 |
+
" gr.update(visible=True),\n",
|
220 |
+
" gr.update(visible=True),\n",
|
221 |
+
" ]\n",
|
222 |
+
"\n",
|
223 |
+
" def bad_line(current_sample, dataset, reason, annotator, campaign):\n",
|
224 |
+
" send_report(current_sample, dataset, reason, annotator, campaign)\n",
|
225 |
+
" next_line = next(line_generators_s3[dataset])\n",
|
226 |
+
" text_col = \"text\"\n",
|
227 |
+
" if text_col not in next_line:\n",
|
228 |
+
" text_col = \"content\"\n",
|
229 |
+
" return [\n",
|
230 |
+
" next_line[text_col],\n",
|
231 |
+
" gr.update(\n",
|
232 |
+
" value=\"\",\n",
|
233 |
+
" placeholder=\"Provide the reason for flagging if you think the sample is bad.\",\n",
|
234 |
+
" ),\n",
|
235 |
+
" next_line,\n",
|
236 |
+
" ]\n",
|
237 |
+
"\n",
|
238 |
+
" good_btn.click(\n",
|
239 |
+
" next_line,\n",
|
240 |
+
" inputs=dataset,\n",
|
241 |
+
" outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],\n",
|
242 |
+
" )\n",
|
243 |
+
" dataset.change(\n",
|
244 |
+
" next_line,\n",
|
245 |
+
" inputs=dataset,\n",
|
246 |
+
" outputs=[text, current_sample_state, reason_txt, good_btn, bad_btn],\n",
|
247 |
+
" )\n",
|
248 |
+
" bad_btn.click(\n",
|
249 |
+
" bad_line,\n",
|
250 |
+
" inputs=[current_sample_state, dataset, reason_txt, annotator, campaign],\n",
|
251 |
+
" outputs=[text, reason_txt, current_sample_state],\n",
|
252 |
+
" )\n",
|
253 |
+
"\n",
|
254 |
+
" demo.launch(enable_queue=False, debug=True)"
|
255 |
+
]
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"metadata": {
|
259 |
+
"kernelspec": {
|
260 |
+
"display_name": "Python 3 (ipykernel)",
|
261 |
+
"language": "python",
|
262 |
+
"name": "python3"
|
263 |
+
},
|
264 |
+
"language_info": {
|
265 |
+
"codemirror_mode": {
|
266 |
+
"name": "ipython",
|
267 |
+
"version": 3
|
268 |
+
},
|
269 |
+
"file_extension": ".py",
|
270 |
+
"mimetype": "text/x-python",
|
271 |
+
"name": "python",
|
272 |
+
"nbconvert_exporter": "python",
|
273 |
+
"pygments_lexer": "ipython3",
|
274 |
+
"version": "3.10.9"
|
275 |
+
}
|
276 |
+
},
|
277 |
+
"nbformat": 4,
|
278 |
+
"nbformat_minor": 5
|
279 |
+
}
|