Spaces:
Runtime error
Runtime error
HuggingFace-SK
commited on
Commit
·
e60eb80
1
Parent(s):
5638c14
browser based local prediections!
Browse files- README.md +1 -1
- main.py +14 -0
- static/style.css +65 -51
- templates/browser-detect.html +306 -0
README.md
CHANGED
|
@@ -6,7 +6,7 @@ colorTo: gray
|
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.36.0
|
| 8 |
python_version: 3.10.4
|
| 9 |
-
app_file:
|
| 10 |
license: gpl-3.0
|
| 11 |
pinned: false
|
| 12 |
---
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.36.0
|
| 8 |
python_version: 3.10.4
|
| 9 |
+
app_file: main.py
|
| 10 |
license: gpl-3.0
|
| 11 |
pinned: false
|
| 12 |
---
|
main.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, Response, request, jsonify, send_from_directory
|
| 2 |
+
|
| 3 |
+
app = Flask(__name__)
|
| 4 |
+
|
| 5 |
+
@app.route('/')
|
| 6 |
+
def index():
|
| 7 |
+
return render_template('browser-detect.html')
|
| 8 |
+
|
| 9 |
+
@app.route('/exported')
|
| 10 |
+
def send_report():
|
| 11 |
+
return send_from_directory("exported", "model.tflite")
|
| 12 |
+
|
| 13 |
+
if (__name__ == '__main__'):
|
| 14 |
+
app.run( host='0.0.0.0', port=7860)
|
static/style.css
CHANGED
|
@@ -1,79 +1,93 @@
|
|
| 1 |
-
|
| 2 |
-
--text: hsl(0 0% 15%);
|
| 3 |
-
padding: 2.5rem;
|
| 4 |
-
font-family: sans-serif;
|
| 5 |
-
color: var(--text);
|
| 6 |
-
}
|
| 7 |
-
body.dark-theme {
|
| 8 |
-
--text: hsl(0 0% 90%);
|
| 9 |
-
background-color: hsl(223 39% 7%);
|
| 10 |
-
}
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
}
|
| 16 |
|
| 17 |
-
|
| 18 |
-
display: flex;
|
| 19 |
-
flex-direction: column;
|
| 20 |
-
align-items: center;
|
| 21 |
-
}
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
}
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
}
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
}
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
margin: 0 auto;
|
| 38 |
}
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
}
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
}
|
| 47 |
|
| 48 |
-
.
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
}
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
}
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
}
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
}
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
}
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
}
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
}
|
|
|
|
| 1 |
+
/* Copyright 2023 The MediaPipe Authors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
you may not use this file except in compliance with the License.
|
| 5 |
+
You may obtain a copy of the License at
|
|
|
|
| 6 |
|
| 7 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
See the License for the specific language governing permissions and
|
| 13 |
+
limitations under the License. */
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
video {
|
| 17 |
+
clear: both;
|
| 18 |
+
display: block;
|
| 19 |
+
transform: rotateY(180deg);
|
| 20 |
+
-webkit-transform: rotateY(180deg);
|
| 21 |
+
-moz-transform: rotateY(180deg);
|
| 22 |
}
|
| 23 |
|
| 24 |
+
section {
|
| 25 |
+
opacity: 1;
|
| 26 |
+
transition: opacity 500ms ease-in-out;
|
| 27 |
}
|
| 28 |
|
| 29 |
+
header,
|
| 30 |
+
footer {
|
| 31 |
+
clear: both;
|
| 32 |
}
|
| 33 |
|
| 34 |
+
.removed {
|
| 35 |
+
display: none;
|
|
|
|
| 36 |
}
|
| 37 |
|
| 38 |
+
.invisible {
|
| 39 |
+
opacity: 0.2;
|
| 40 |
}
|
| 41 |
|
| 42 |
+
.note {
|
| 43 |
+
font-style: italic;
|
| 44 |
+
font-size: 130%;
|
| 45 |
}
|
| 46 |
|
| 47 |
+
.videoView,
|
| 48 |
+
.detectOnClick {
|
| 49 |
+
position: relative;
|
| 50 |
+
float: left;
|
| 51 |
+
width: 48%;
|
| 52 |
+
margin: 2% 1%;
|
| 53 |
+
cursor: pointer;
|
| 54 |
}
|
| 55 |
|
| 56 |
+
.videoView p,
|
| 57 |
+
.detectOnClick p {
|
| 58 |
+
position: absolute;
|
| 59 |
+
padding: 5px;
|
| 60 |
+
background-color: #007f8b;
|
| 61 |
+
color: #fff;
|
| 62 |
+
border: 1px dashed rgba(255, 255, 255, 0.7);
|
| 63 |
+
z-index: 2;
|
| 64 |
+
font-size: 12px;
|
| 65 |
+
margin: 0;
|
| 66 |
}
|
| 67 |
|
| 68 |
+
.highlighter {
|
| 69 |
+
background: rgba(0, 255, 0, 0.25);
|
| 70 |
+
border: 1px dashed #fff;
|
| 71 |
+
z-index: 1;
|
| 72 |
+
position: absolute;
|
| 73 |
}
|
| 74 |
|
| 75 |
+
.canvas {
|
| 76 |
+
z-index: 1;
|
| 77 |
+
position: absolute;
|
| 78 |
+
pointer-events: none;
|
| 79 |
}
|
| 80 |
|
| 81 |
+
.output_canvas {
|
| 82 |
+
transform: rotateY(180deg);
|
| 83 |
+
-webkit-transform: rotateY(180deg);
|
| 84 |
+
-moz-transform: rotateY(180deg);
|
| 85 |
}
|
| 86 |
|
| 87 |
+
.detectOnClick {
|
| 88 |
+
z-index: 0;
|
| 89 |
}
|
| 90 |
|
| 91 |
+
.detectOnClick img {
|
| 92 |
+
width: 100%;
|
| 93 |
}
|
templates/browser-detect.html
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en"><head></head>
|
| 3 |
+
<meta charset="UTF-8">
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
<link rel="apple-touch-icon" type="image/png" href="https://cpwebassets.codepen.io/assets/favicon/apple-touch-icon-5ae1a0698dcc2402e9712f7d01ed509a57814f994c660df9f7a952f3060705ee.png">
|
| 7 |
+
|
| 8 |
+
<meta name="apple-mobile-web-app-title" content="CodePen">
|
| 9 |
+
|
| 10 |
+
<link rel="shortcut icon" type="image/x-icon" href="https://cpwebassets.codepen.io/assets/favicon/favicon-aec34940fbc1a6e787974dcd360f2c6b63348d4b1f4e06c77743096d55480f33.ico">
|
| 11 |
+
|
| 12 |
+
<link rel="mask-icon" type="image/x-icon" href="https://cpwebassets.codepen.io/assets/favicon/logo-pin-b4b4269c16397ad2f0f7a01bcdf513a1994f4c94b8af2f191c09eb0d601762b1.svg" color="#111">
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
<script src="https://cpwebassets.codepen.io/assets/common/stopExecutionOnTimeout-2c7831bb44f98c1391d6a4ffda0e1fd302503391ca806e7fcc7b9b87197aec26.js"></script>
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
<title>CodePen - MediaPipe HandLandmarker Task for web</title>
|
| 21 |
+
|
| 22 |
+
<link rel="canonical" href="https://codepen.io/mediapipe-preview/pen/gOKBGPN">
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
<style>
|
| 28 |
+
/* Copyright 2023 The MediaPipe Authors.
|
| 29 |
+
|
| 30 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 31 |
+
you may not use this file except in compliance with the License.
|
| 32 |
+
You may obtain a copy of the License at
|
| 33 |
+
|
| 34 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 35 |
+
|
| 36 |
+
Unless required by applicable law or agreed to in writing, software
|
| 37 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 38 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 39 |
+
See the License for the specific language governing permissions and
|
| 40 |
+
limitations under the License. */
|
| 41 |
+
|
| 42 |
+
body {
|
| 43 |
+
font-family: roboto;
|
| 44 |
+
margin: 2em;
|
| 45 |
+
color: #3d3d3d;
|
| 46 |
+
--mdc-theme-primary: #007f8b;
|
| 47 |
+
--mdc-theme-on-primary: #f1f3f4;
|
| 48 |
+
}
|
| 49 |
+
</style>
|
| 50 |
+
|
| 51 |
+
<script>
|
| 52 |
+
window.console = window.console || function(t) {};
|
| 53 |
+
</script>
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
</head>
|
| 58 |
+
|
| 59 |
+
<body translate="no">
|
| 60 |
+
<!-- Copyright 2023 The MediaPipe Authors.
|
| 61 |
+
|
| 62 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 63 |
+
you may not use this file except in compliance with the License.
|
| 64 |
+
You may obtain a copy of the License at
|
| 65 |
+
|
| 66 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 67 |
+
|
| 68 |
+
Unless required by applicable law or agreed to in writing, software
|
| 69 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 70 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 71 |
+
See the License for the specific language governing permissions and
|
| 72 |
+
limitations under the License. -->
|
| 73 |
+
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/drawing_utils/drawing_utils.js" crossorigin="anonymous"></script>
|
| 74 |
+
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/hands/hands.js" crossorigin="anonymous"></script>
|
| 75 |
+
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-core"></script>
|
| 76 |
+
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-cpu"></script>
|
| 77 |
+
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-tflite/dist/tf-tflite.min.js"></script>
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
<div id="liveView" class="videoView">
|
| 81 |
+
<img id="output_image"></img>
|
| 82 |
+
<button id="webcamButton">
|
| 83 |
+
<span>ENABLE WEBCAM</span>
|
| 84 |
+
</button>
|
| 85 |
+
<div style="position: relative;">
|
| 86 |
+
<video id="webcam" style="position: absolute" autoplay="" playsinline=""></video>
|
| 87 |
+
<canvas class="output_canvas" id="output_canvas" style="position: absolute; left: 0px; top: 0px; display:none"></canvas>
|
| 88 |
+
</div>
|
| 89 |
+
</div>
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
<script type="module">
|
| 94 |
+
|
| 95 |
+
import { HandLandmarker, FilesetResolver } from "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@0.10.0";
|
| 96 |
+
let handLandmarker = undefined;
|
| 97 |
+
let runningMode = "IMAGE";
|
| 98 |
+
let enableWebcamButton;
|
| 99 |
+
let webcamRunning = false;
|
| 100 |
+
// Before we can use HandLandmarker class we must wait for it to finish
|
| 101 |
+
// loading. Machine Learning models can be large and take a moment to
|
| 102 |
+
// get everything needed to run.
|
| 103 |
+
const createHandLandmarker = async () => {
|
| 104 |
+
const vision = await FilesetResolver.forVisionTasks("https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@0.10.0/wasm");
|
| 105 |
+
handLandmarker = await HandLandmarker.createFromOptions(vision, {
|
| 106 |
+
baseOptions: {
|
| 107 |
+
modelAssetPath: `https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task`,
|
| 108 |
+
delegate: "GPU"
|
| 109 |
+
},
|
| 110 |
+
runningMode: runningMode,
|
| 111 |
+
numHands: 1
|
| 112 |
+
});
|
| 113 |
+
};
|
| 114 |
+
createHandLandmarker();
|
| 115 |
+
|
| 116 |
+
const MODEL_PATH = "/exported"
|
| 117 |
+
var objectDetector = tflite.loadTFLiteModel(MODEL_PATH);
|
| 118 |
+
|
| 119 |
+
/********************************************************************
|
| 120 |
+
// Demo 2: Continuously grab image from webcam stream and detect it.
|
| 121 |
+
********************************************************************/
|
| 122 |
+
var global_res = 0;
|
| 123 |
+
const video = document.getElementById("webcam");
|
| 124 |
+
const canvasElement = document.getElementById("output_canvas");
|
| 125 |
+
const canvasCtx = canvasElement.getContext("2d");
|
| 126 |
+
var x_array=[]
|
| 127 |
+
var y_array=[]
|
| 128 |
+
// Check if webcam access is supported.
|
| 129 |
+
const hasGetUserMedia = () => { var _a; return !!((_a = navigator.mediaDevices) === null || _a === void 0 ? void 0 : _a.getUserMedia); };
|
| 130 |
+
// If webcam supported, add event listener to button for when user
|
| 131 |
+
// wants to activate it.
|
| 132 |
+
if (hasGetUserMedia()) {
|
| 133 |
+
enableWebcamButton = document.getElementById("webcamButton");
|
| 134 |
+
enableWebcamButton.addEventListener("click", enableCam);
|
| 135 |
+
}
|
| 136 |
+
else {
|
| 137 |
+
console.warn("getUserMedia() is not supported by your browser");
|
| 138 |
+
}
|
| 139 |
+
// Enable the live webcam view and start detection.
|
| 140 |
+
function enableCam(event) {
|
| 141 |
+
if (!handLandmarker) {
|
| 142 |
+
console.log("Wait! objectDetector not loaded yet.");
|
| 143 |
+
return;
|
| 144 |
+
}
|
| 145 |
+
if (webcamRunning === true) {
|
| 146 |
+
webcamRunning = false;
|
| 147 |
+
enableWebcamButton.innerText = "ENABLE PREDICTIONS";
|
| 148 |
+
}
|
| 149 |
+
else {
|
| 150 |
+
webcamRunning = true;
|
| 151 |
+
enableWebcamButton.innerText = "DISABLE PREDICTIONS";
|
| 152 |
+
}
|
| 153 |
+
// getUsermedia parameters.
|
| 154 |
+
const constraints = {
|
| 155 |
+
video: true
|
| 156 |
+
};
|
| 157 |
+
// Activate the webcam stream.
|
| 158 |
+
navigator.mediaDevices.getUserMedia(constraints).then((stream) => {
|
| 159 |
+
video.srcObject = stream;
|
| 160 |
+
video.addEventListener("loadeddata", predictWebcam);
|
| 161 |
+
});
|
| 162 |
+
}
|
| 163 |
+
let lastVideoTime = -1;
|
| 164 |
+
let results = undefined;
|
| 165 |
+
console.log(video);
|
| 166 |
+
async function predictWebcam() {
|
| 167 |
+
canvasElement.style.width = video.videoWidth;
|
| 168 |
+
;
|
| 169 |
+
canvasElement.style.height = video.videoHeight;
|
| 170 |
+
canvasElement.width = video.videoWidth;
|
| 171 |
+
canvasElement.height = video.videoHeight;
|
| 172 |
+
// Now let's start detecting the stream.
|
| 173 |
+
if (runningMode === "IMAGE") {
|
| 174 |
+
runningMode = "VIDEO";
|
| 175 |
+
await handLandmarker.setOptions({ runningMode: "VIDEO" });
|
| 176 |
+
}
|
| 177 |
+
let startTimeMs = performance.now();
|
| 178 |
+
if (lastVideoTime !== video.currentTime) {
|
| 179 |
+
lastVideoTime = video.currentTime;
|
| 180 |
+
results = handLandmarker.detectForVideo(video, startTimeMs);
|
| 181 |
+
}
|
| 182 |
+
canvasCtx.save();
|
| 183 |
+
canvasCtx.clearRect(0, 0, canvasElement.width, canvasElement.height);
|
| 184 |
+
canvasCtx.drawImage(video, 0, 0, canvasElement.width, canvasElement.height)
|
| 185 |
+
if (results.landmarks) {
|
| 186 |
+
annotateImage()
|
| 187 |
+
//detectSign()
|
| 188 |
+
}
|
| 189 |
+
canvasCtx.restore();
|
| 190 |
+
// Call this function again to keep predicting when the browser is ready.
|
| 191 |
+
if (webcamRunning === true) {
|
| 192 |
+
window.requestAnimationFrame(predictWebcam);
|
| 193 |
+
}
|
| 194 |
+
}
|
| 195 |
+
function annotateImage(){
|
| 196 |
+
|
| 197 |
+
//console.log(results.landmarks)
|
| 198 |
+
if(results.landmarks[0]){
|
| 199 |
+
x_array=[]
|
| 200 |
+
y_array=[]
|
| 201 |
+
results.landmarks[0].forEach(iterate)
|
| 202 |
+
//console.log(x_array)
|
| 203 |
+
var image_height = video.videoHeight
|
| 204 |
+
var image_width= video.videoWidth
|
| 205 |
+
var min_x = Math.min(...x_array)*image_width
|
| 206 |
+
var min_y = Math.min(...y_array)*image_height
|
| 207 |
+
var max_x = Math.max(...x_array)*image_width
|
| 208 |
+
var max_y = Math.max(...y_array)*image_height
|
| 209 |
+
|
| 210 |
+
var sect_height = max_y-(min_y)
|
| 211 |
+
var sect_width = max_x-(min_x)
|
| 212 |
+
var center_x=(min_x+max_x)/2
|
| 213 |
+
var center_y=(min_y+max_y)/2
|
| 214 |
+
|
| 215 |
+
var sect_diameter=50
|
| 216 |
+
if(sect_height>sect_width){
|
| 217 |
+
sect_diameter = sect_height
|
| 218 |
+
//console.log("sect_height", sect_diameter)
|
| 219 |
+
}
|
| 220 |
+
if(sect_height<sect_width){
|
| 221 |
+
sect_diameter = sect_width
|
| 222 |
+
// console.log("sect_width", sect_diameter)
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
sect_diameter=sect_diameter+50
|
| 226 |
+
var sect_radius=sect_diameter/2
|
| 227 |
+
var crop_top=center_y-sect_radius
|
| 228 |
+
var crop_bottom=center_y+sect_radius
|
| 229 |
+
var crop_left=center_x-sect_radius
|
| 230 |
+
var crop_right=center_x+sect_radius
|
| 231 |
+
if(crop_top<0){
|
| 232 |
+
crop_top=0
|
| 233 |
+
}
|
| 234 |
+
if(crop_left<0){
|
| 235 |
+
crop_left=0
|
| 236 |
+
}
|
| 237 |
+
if(crop_right>image_width){
|
| 238 |
+
crop_right=image_width
|
| 239 |
+
}
|
| 240 |
+
if(crop_bottom>image_height){
|
| 241 |
+
crop_bottom=image_height
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
canvasCtx.beginPath();
|
| 245 |
+
canvasCtx.rect(crop_left, crop_top, crop_right-crop_left, crop_bottom-crop_top);
|
| 246 |
+
canvasCtx.stroke();
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
}
|
| 250 |
+
for (const landmarks of results.landmarks) {
|
| 251 |
+
drawConnectors(canvasCtx, landmarks, HAND_CONNECTIONS, {
|
| 252 |
+
color: "#00FF00",
|
| 253 |
+
lineWidth: 5
|
| 254 |
+
});
|
| 255 |
+
drawLandmarks(canvasCtx, landmarks, { color: "#FF0000", lineWidth: 2 });
|
| 256 |
+
}
|
| 257 |
+
var dataurl=cropCanvas(canvasElement,crop_left,crop_top,244,244).toDataURL("image/jpeg", 2);
|
| 258 |
+
document.getElementById("output_image").src=dataurl
|
| 259 |
+
|
| 260 |
+
//# sourceURL=pen.js
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
function iterate(x,y){
|
| 265 |
+
x_array.push(x.x)
|
| 266 |
+
y_array.push(x.y)
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
const cropCanvas = (sourceCanvas,left,top,width,height) => {
|
| 270 |
+
let destCanvas = document.createElement('canvas');
|
| 271 |
+
destCanvas.width = width;
|
| 272 |
+
destCanvas.height = height;
|
| 273 |
+
destCanvas.getContext("2d").drawImage(
|
| 274 |
+
sourceCanvas,
|
| 275 |
+
left,top,width,height, // source rect with content to crop
|
| 276 |
+
0,0,width,height); // newCanvas, same size as source
|
| 277 |
+
var predictionInput=tf.browser.fromPixels(destCanvas.getContext("2d").getImageData(0, 0, 224, 224))
|
| 278 |
+
|
| 279 |
+
predict(tf.expandDims(predictionInput,0))
|
| 280 |
+
return destCanvas;
|
| 281 |
+
}
|
| 282 |
+
async function predict(inputTensor){
|
| 283 |
+
//console.log("in predict")
|
| 284 |
+
var letter_list=["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z","#"]
|
| 285 |
+
objectDetector.then(function (res) {
|
| 286 |
+
var prediction = res.predict(inputTensor);
|
| 287 |
+
var outputArray = prediction.dataSync(); // Get the output as an array
|
| 288 |
+
var predictedClass = outputArray.indexOf(Math.max(...outputArray)); // Get the index
|
| 289 |
+
|
| 290 |
+
console.log(letter_list[predictedClass]);
|
| 291 |
+
}, function (err) {
|
| 292 |
+
console.log(err);
|
| 293 |
+
});
|
| 294 |
+
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
</script>
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@0.10.0/wasm/vision_wasm_internal.js" crossorigin="anonymous"></script>
|
| 305 |
+
</body>
|
| 306 |
+
</html>
|