Spaces:
Runtime error
Runtime error
Zaheer
commited on
Commit
•
517fa88
1
Parent(s):
326cdaf
Ready to Use
Browse files- README.md +3 -3
- app.py +82 -0
- requirements.txt +86 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Object Detection With YOLO
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.37.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Object Detection With YOLO
|
3 |
+
emoji: ❤️🔥
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: white
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.37.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoFeatureExtractor, YolosForObjectDetection
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import io
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
11 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
12 |
+
|
13 |
+
|
14 |
+
def process_class_list(classes_string: str):
|
15 |
+
return [x.strip() for x in classes_string.split(",")] if classes_string else []
|
16 |
+
|
17 |
+
def model_inference(img, model_name: str, prob_threshold: int, classes_to_show = str):
|
18 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
|
19 |
+
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
|
20 |
+
|
21 |
+
img = Image.fromarray(img)
|
22 |
+
|
23 |
+
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model(pixel_values, output_attentions=True)
|
27 |
+
|
28 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
29 |
+
keep = probas.max(-1).values > prob_threshold
|
30 |
+
|
31 |
+
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
|
32 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
33 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes']
|
34 |
+
|
35 |
+
classes_list = process_class_list(classes_to_show)
|
36 |
+
return plot_results(
|
37 |
+
img, probas[keep], bboxes_scaled[keep], model, classes_list
|
38 |
+
)
|
39 |
+
|
40 |
+
def plot_results(pil_img, prob, boxes, model, classes_list):
|
41 |
+
plt.figure(figsize=(16,10))
|
42 |
+
plt.imshow(pil_img)
|
43 |
+
ax = plt.gca()
|
44 |
+
colors = COLORS * 100
|
45 |
+
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
|
46 |
+
cl = p.argmax()
|
47 |
+
object_class = model.config.id2label[cl.item()]
|
48 |
+
|
49 |
+
if len(classes_list) > 0 :
|
50 |
+
if object_class not in classes_list:
|
51 |
+
continue
|
52 |
+
|
53 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
|
54 |
+
fill=False, color=c, linewidth=3))
|
55 |
+
text = f'{object_class}: {p[cl]:0.2f}'
|
56 |
+
ax.text(xmin, ymin, text, fontsize=15,
|
57 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
58 |
+
plt.axis('off')
|
59 |
+
return fig2img(plt.gcf())
|
60 |
+
|
61 |
+
def fig2img(fig):
|
62 |
+
buf = io.BytesIO()
|
63 |
+
fig.savefig(buf)
|
64 |
+
buf.seek(0)
|
65 |
+
return Image.open(buf)
|
66 |
+
|
67 |
+
description = """YOLOS - Object Detection"""
|
68 |
+
|
69 |
+
image_in = gr.components.Image()
|
70 |
+
image_out = gr.components.Image()
|
71 |
+
model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small", label="YOLOS Model")
|
72 |
+
prob_threshold_slider = gr.components.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold")
|
73 |
+
classes_to_show = gr.components.Textbox(placeholder="e.g. person, car , laptop", label="Classes to use (Optional)")
|
74 |
+
|
75 |
+
Iface = gr.Interface(
|
76 |
+
fn=model_inference,
|
77 |
+
inputs=[image_in,model_choice, prob_threshold_slider, classes_to_show],
|
78 |
+
outputs=image_out,
|
79 |
+
title="Object Detection With YOLO",
|
80 |
+
description=description,
|
81 |
+
theme='HaleyCH/HaleyCH_Theme',
|
82 |
+
).launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.1.0
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.0.1
|
5 |
+
annotated-types==0.5.0
|
6 |
+
anyio==3.7.1
|
7 |
+
async-timeout==4.0.2
|
8 |
+
attrs==23.1.0
|
9 |
+
certifi==2023.5.7
|
10 |
+
charset-normalizer==3.2.0
|
11 |
+
click==8.1.5
|
12 |
+
colorama==0.4.6
|
13 |
+
contourpy==1.1.0
|
14 |
+
cycler==0.11.0
|
15 |
+
exceptiongroup==1.1.2
|
16 |
+
fastapi==0.100.0
|
17 |
+
ffmpy==0.3.1
|
18 |
+
filelock==3.12.2
|
19 |
+
fonttools==4.41.0
|
20 |
+
frozenlist==1.4.0
|
21 |
+
fsspec==2023.6.0
|
22 |
+
gitdb==4.0.10
|
23 |
+
GitPython==3.1.32
|
24 |
+
gradio==3.37.0
|
25 |
+
gradio_client==0.2.10
|
26 |
+
h11==0.14.0
|
27 |
+
httpcore==0.17.3
|
28 |
+
httpx==0.24.1
|
29 |
+
huggingface-hub==0.16.4
|
30 |
+
idna==3.4
|
31 |
+
Jinja2==3.1.2
|
32 |
+
jsonschema==4.18.4
|
33 |
+
jsonschema-specifications==2023.6.1
|
34 |
+
kiwisolver==1.4.4
|
35 |
+
linkify-it-py==2.0.2
|
36 |
+
markdown-it-py==2.2.0
|
37 |
+
MarkupSafe==2.1.3
|
38 |
+
matplotlib==3.7.2
|
39 |
+
mdit-py-plugins==0.3.3
|
40 |
+
mdurl==0.1.2
|
41 |
+
mpmath==1.3.0
|
42 |
+
multidict==6.0.4
|
43 |
+
networkx==3.1
|
44 |
+
numpy==1.25.1
|
45 |
+
opencv-python==4.8.0.74
|
46 |
+
orjson==3.9.2
|
47 |
+
packaging==23.1
|
48 |
+
pandas==2.0.3
|
49 |
+
Pillow==10.0.0
|
50 |
+
psutil==5.9.5
|
51 |
+
pydantic==2.0.3
|
52 |
+
pydantic_core==2.3.0
|
53 |
+
pydub==0.25.1
|
54 |
+
pyparsing==3.0.9
|
55 |
+
python-dateutil==2.8.2
|
56 |
+
python-multipart==0.0.6
|
57 |
+
pytz==2023.3
|
58 |
+
PyYAML==6.0.1
|
59 |
+
referencing==0.29.3
|
60 |
+
regex==2023.6.3
|
61 |
+
requests==2.31.0
|
62 |
+
rpds-py==0.8.11
|
63 |
+
safetensors==0.3.1
|
64 |
+
scipy==1.11.1
|
65 |
+
seaborn==0.12.2
|
66 |
+
semantic-version==2.10.0
|
67 |
+
six==1.16.0
|
68 |
+
smmap==5.0.0
|
69 |
+
sniffio==1.3.0
|
70 |
+
starlette==0.27.0
|
71 |
+
sympy==1.12
|
72 |
+
thop==0.1.1.post2209072238
|
73 |
+
tokenizers==0.13.3
|
74 |
+
toolz==0.12.0
|
75 |
+
torch==2.0.1
|
76 |
+
torchvision==0.15.2
|
77 |
+
tqdm==4.65.0
|
78 |
+
transformers==4.30.2
|
79 |
+
typing_extensions==4.7.1
|
80 |
+
tzdata==2023.3
|
81 |
+
uc-micro-py==1.0.2
|
82 |
+
ultralytics==8.0.136
|
83 |
+
urllib3==2.0.3
|
84 |
+
uvicorn==0.23.1
|
85 |
+
websockets==11.0.3
|
86 |
+
yarl==1.9.2
|