DenseConnector-v1.5-8B / dc /eval /run_inference_benchmark_general.py
HuanjinYao's picture
Upload 104 files
970607e verified
raw
history blame
5.71 kB
import math
import os
import argparse
import json
from tqdm import tqdm
from dc.eval.model_utils import load_video
import shortuuid
from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from dc.conversation import conv_templates, SeparatorStyle
from dc.model.builder import load_pretrained_model
from dc.utils import disable_torch_init
from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from PIL import Image
import math
import torch
import time
def llava_inference(video_frames, question, conv_mode, model, tokenizer, image_processor, image_sizes):
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + question
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image_tensor = process_images(video_frames, image_processor, model.config)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
image_sizes=image_sizes,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=512,
use_cache=True)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(outputs)
return outputs
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def parse_args():
"""
Parse command-line arguments.
"""
parser = argparse.ArgumentParser()
# Define the command-line arguments
parser.add_argument('--video_dir', help='Directory containing video files.', required=True)
parser.add_argument('--gt_file', help='Path to the ground truth file.', required=True)
parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True)
parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True)
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--conv-mode", type=str, required=False, default='vicuna_v1')
parser.add_argument("--num_chunks", type=int, default=1)
parser.add_argument("--chunk_idx", type=int, default=0)
parser.add_argument("--num_frames", type=int, default=100)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--use_pool", action='store_true')
return parser.parse_args()
def run_inference(args):
"""
Run inference on a set of video files using the Dense Connector model.
Args:
args: Command-line arguments.
"""
disable_torch_init()
model_path = os.path.expanduser(args.model_name)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name, is_video=True, if_pool=args.use_pool)
gt_contents = json.load(open(args.gt_file, "r"))
gt_contents = get_chunk(gt_contents, args.num_chunks, args.chunk_idx)
answers_file = os.path.join(args.output_dir, f"{args.output_name}.json")
os.makedirs(args.output_dir, exist_ok=True)
ans_file = open(answers_file, "w")
# Create the output directory if it doesn't exist
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
output_list = [] # List to store the output results
conv_mode = args.conv_mode
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
# Iterate over each sample in the ground truth file
index = 0
for sample in tqdm(gt_contents):
video_name = sample['video_name']
sample_set = sample
question = sample['Q']
# Load the video file
for fmt in video_formats: # Added this line
temp_path = os.path.join(args.video_dir, f"{video_name}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
video_frames, sizes = load_video(video_path, num_frm=args.num_frames)
# Run inference on the video and add the output to the list
output = llava_inference(video_frames, question, conv_mode, model,
tokenizer, image_processor, sizes)
sample_set['pred'] = output
output_list.append(sample_set)
ans_file.write(json.dumps(sample_set) + "\n")
index += 1
break
ans_file.close()
# Save the output list to a JSON file
# with open(os.path.join(args.output_dir, f"{args.output_name}.json"), 'w') as file:
# json.dump(output_list, file)
if __name__ == "__main__":
args = parse_args()
run_inference(args)