DenseConnector-v1.5-8B / dc /eval /model_vqa_science.py
HuanjinYao's picture
Upload 104 files
970607e verified
raw
history blame
7.11 kB
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from dc.conversation import conv_templates, SeparatorStyle
from dc.model.builder import load_pretrained_model
from dc.utils import disable_torch_init
from dc.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
terminators = [
tokenizer.eos_token_id
]
if args.conv_mode == 'llama_3':
if tokenizer.unk_token is None:
tokenizer.unk_token = "<|reserved_special_token_0|>"
tokenizer.pad_token = tokenizer.unk_token
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
for i, line in enumerate(tqdm(questions)):
idx = line["id"]
question = line['conversations'][0]
qs = question['value'].replace('<image>', '').strip()
cur_prompt = qs
if 'image' in line:
image_file = line["image"]
image = Image.open(os.path.join(args.image_folder, image_file))
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
images = image_tensor.unsqueeze(0).half().cuda()
if getattr(model.config, 'mm_use_im_start_end', False):
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
cur_prompt = '<image>' + '\n' + cur_prompt
else:
images = None
if args.single_pred_prompt:
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)] if conv.version == "v0" else None
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
eos_token_id=terminators,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=stopping_criteria,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
# print(tokenizer.batch_decode(output_ids))
# input_token_len = input_ids.shape[1]
# n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
# if n_diff_input_output > 0:
# print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
# outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
# outputs = outputs.strip()
# if outputs.endswith(stop_str):
# outputs = outputs[:-len(stop_str)]
# outputs = outputs.strip()
# prompt for answer
if args.answer_prompter:
outputs_reasoning = outputs
input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' ###\nANSWER:', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=64,
use_cache=True,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
outputs = outputs_reasoning + '\n The answer is ' + outputs
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.json")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v0")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--answer-prompter", action="store_true")
parser.add_argument("--single-pred-prompt", action="store_true")
args = parser.parse_args()
eval_model(args)