Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
import os | |
import json | |
from tqdm import tqdm | |
from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from dc.conversation import conv_templates, SeparatorStyle | |
from dc.model.builder import load_pretrained_model | |
from dc.utils import disable_torch_init | |
from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path | |
from datasets import load_dataset | |
from PIL import Image | |
import math | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
def create_one_query(problem, shot_num, shot_type, use_caption): | |
### [1] Demo prompt | |
demo_prompt = "" | |
### [2] Test query | |
# problem info | |
question = problem['question'] | |
unit = problem['unit'] | |
choices = problem['choices'] | |
# caption = problem['caption'] | |
precision = problem['precision'] | |
question_type = problem['question_type'] | |
answer_type = problem['answer_type'] | |
# hint | |
if shot_type == 'solution': | |
if question_type == "multi_choice": | |
assert answer_type == "text" | |
hint_text = f"Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end." | |
else: | |
assert answer_type in ["integer", "float", "list"] | |
if answer_type == "integer": | |
hint_text = f"Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end." | |
elif answer_type == "float" and precision == 1: | |
hint_text = f"Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end." | |
elif answer_type == "float" and precision == 2: | |
hint_text = f"Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end." | |
elif answer_type == "list": | |
hint_text = f"Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end." | |
else: | |
assert shot_type == 'code' | |
hint_text = "Hint: Please generate a python code to solve the problem" | |
# question | |
question_text = f"Question: {question}" | |
if unit: | |
question_text += f" (Unit: {unit})" | |
# choices | |
if choices: | |
# choices: (A) 1.2 (B) 1.3 (C) 1.4 (D) 1.5 | |
texts = ["Choices:"] | |
for i, choice in enumerate(choices): | |
texts.append(f"({chr(ord('A')+i)}) {choice}") | |
choices_text = "\n".join(texts) | |
else: | |
choices_text = "" | |
# prompt | |
if shot_type == 'solution': | |
prompt = "Solution: " | |
else: | |
assert shot_type == 'code' | |
prompt = "Python code: " | |
elements = [hint_text, question_text, choices_text] | |
test_query = "\n".join([e for e in elements if e != ""]) | |
### [3] Final query | |
query = demo_prompt + "\n\n" + test_query | |
query = query.strip() | |
return query | |
def eval_model(args): | |
# Model | |
disable_torch_init() | |
model_path = os.path.expanduser(args.model_path) | |
model_name = get_model_name_from_path(model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name, | |
load_8bit=args.load_8bit) | |
questions = json.load(open(os.path.expanduser(args.question_file), "r")) | |
dataset = load_dataset('AI4Math/MathVista')['testmini'] | |
questions = [dict(pid=d['pid'], info=d) for d in dataset] | |
# questions = [dict(pid=pid, info=qs) for pid, qs in questions.items()] | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
answers_file = os.path.expanduser(args.answers_file) | |
os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
terminators = [ | |
tokenizer.eos_token_id | |
] | |
if args.conv_mode == 'llama_3': | |
if tokenizer.unk_token is None: | |
tokenizer.unk_token = "<|reserved_special_token_0|>" | |
tokenizer.pad_token = tokenizer.unk_token | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
if os.path.exists(answers_file): | |
file = open(answers_file, "r") | |
pred_contents = [json.loads(line) for line in file] | |
done_pid = [sample['pid'] for sample in pred_contents] | |
else: | |
done_pid = [] | |
ans_file = open(answers_file, "a") | |
for i, line in enumerate(tqdm(questions)): | |
idx = line['pid'] | |
info = line['info'] | |
if idx in done_pid: | |
continue | |
qs = create_one_query( | |
problem = info, | |
shot_num = 0, | |
shot_type = 'solution', | |
use_caption = False, | |
) | |
query = qs | |
if 'image' in info: | |
image_file = info["image"] | |
image = Image.open(os.path.join(args.image_folder, image_file)) | |
if hasattr(model.config, 'image_size_aux'): | |
if not hasattr(image_processor, 'image_size_raw'): | |
image_processor.image_size_raw = image_processor.crop_size.copy() | |
image_processor.crop_size['height'] = model.config.image_size_aux | |
image_processor.crop_size['width'] = model.config.image_size_aux | |
image_processor.size['shortest_edge'] = model.config.image_size_aux | |
image_tensor = process_images([image], image_processor, model.config)[0] | |
image_grid = getattr(model.config, 'image_grid', 1) | |
if hasattr(model.config, 'image_size_aux'): | |
raw_shape = [image_processor.image_size_raw['height'] * image_grid, | |
image_processor.image_size_raw['width'] * image_grid] | |
image_tensor_aux = image_tensor | |
image_tensor = torch.nn.functional.interpolate(image_tensor[None], | |
size=raw_shape, | |
mode='bilinear', | |
align_corners=False)[0] | |
else: | |
image_tensor_aux = [] | |
if image_grid >= 2: | |
raw_image = image_tensor.reshape(3, | |
image_grid, | |
image_processor.image_size_raw['height'], | |
image_grid, | |
image_processor.image_size_raw['width']) | |
raw_image = raw_image.permute(1, 3, 0, 2, 4) | |
raw_image = raw_image.reshape(-1, 3, | |
image_processor.image_size_raw['height'], | |
image_processor.image_size_raw['width']) | |
if getattr(model.config, 'image_global', False): | |
global_image = image_tensor | |
if len(global_image.shape) == 3: | |
global_image = global_image[None] | |
global_image = torch.nn.functional.interpolate(global_image, | |
size=[image_processor.image_size_raw['height'], | |
image_processor.image_size_raw['width']], | |
mode='bilinear', | |
align_corners=False) | |
# [image_crops, image_global] | |
raw_image = torch.cat([raw_image, global_image], dim=0) | |
image_tensor = raw_image.contiguous() | |
images = image_tensor[None].to(dtype=model.dtype, device='cuda', non_blocking=True) | |
images_aux = image_tensor_aux[None].to(dtype=model.dtype, device='cuda', non_blocking=True) if len(image_tensor_aux)>0 else None | |
if getattr(model.config, 'mm_use_im_start_end', False): | |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
else: | |
images = None | |
images_aux = None | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=images, | |
images_aux=images_aux, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
max_new_tokens=1024, | |
bos_token_id=tokenizer.bos_token_id, # Begin of sequence token | |
eos_token_id=terminators, # End of sequence token | |
pad_token_id=tokenizer.pad_token_id, # Pad token | |
use_cache=True, | |
) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
# print(tokenizer.batch_decode(output_ids)[0].strip()) | |
del info['decoded_image'] | |
info['query'] = query | |
info['response'] = outputs | |
ans_file.write(json.dumps(info) + "\n") | |
ans_file.flush() | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--model-base", type=str, default=None) | |
parser.add_argument("--image-folder", type=str, default="") | |
parser.add_argument("--question-file", type=str, default="tables/question.json") | |
parser.add_argument("--answers-file", type=str, default="answer.jsonl") | |
parser.add_argument("--conv-mode", type=str, default="llava_v0") | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--temperature", type=float, default=0.2) | |
parser.add_argument("--answer-prompter", action="store_true") | |
parser.add_argument('--load_8bit', type=bool, default=False) | |
parser.add_argument("--single-pred-prompt", action="store_true") | |
args = parser.parse_args() | |
eval_model(args) |